
 

 

 

 

 

 

Object Oriented Programming Using 

C++ 
 

 

 

 

 

 

 

 

 

 

 

 

 

   



 

                                     P.T.O 2 

 LECTURE NOTES  

ON         

Object Oriented Programming Using C++ 

 

 

 

 

Prepared by 

Dr. Subasish Mohapatra 
       

 

 
 

 

 

 

 

 

Department of Computer Science and Application 

College of Engineering and Technology, Bhubaneswar 

Biju Patnaik University of Technology, Odisha  

http://www.cet.edu.in/


 

                                     P.T.O 3 

SYLLABUS 

PCCS2207 Object Oriented Programming 

 
Module I            

Introduction to object oriented programming, user defined types, structures, unions, 
polymorphism, encapsulation. Getting started with C++ syntax, data-type, variables, 
strings, functions, default values in functions, recursion, namespaces, operators, flow 
control, arrays and pointers. 
 
 
Module II            
Abstraction mechanism: Classes, private, public, constructors, destructors, member data,  
member functions, inline function, friend functions, static members, and references. 
Inheritance: Class hierarchy, derived classes, single inheritance, multiple, multilevel, 
hybrid inheritance, role of virtual base class, constructor and destructor execution, base 
initialization using derived class constructors. 
Polymorphism: Binding, Static binding, Dynamic binding, Static polymorphism: Function 
Overloading, Ambiguity in function overloading, Dynamic polymorphism: Base class 
pointer, object slicing, late binding, method overriding with virtual functions, pure virtual 
functions, abstract classes.  
Operator Overloading: This pointer, applications of this pointer, Operator function,  
member and non member operator function, operator overloading, I/O operators. 
Exception handling: Try, throw, and catch, exceptions and derived classes, function 
exception declaration, unexpected exceptions, exception when handling exceptions, 
resource capture and release. 
  
 
Module III             

Dynamic memory management, new and delete operators, object copying, copy 
constructor, assignment operator, virtual destructor. 
Template: template classes, template functions. 
Standard Template Library: Fundamental idea about string, iterators, hashes, iostreams 
and other types. 
Namespaces: user defined namespaces, namespaces provided by library. 
Object Oriented Design, design and programming, role of classes. 
 
 
Text Books: 

1.    Object Oriented Programming with C++    by E. Balagurusamy, McGraw-Hill   
        Education (India) 
2.    ANSI and Turbo C++     by    Ashoke N. Kamthane, Pearson Education  
 
Reference Books:  
1. Big C++   - Wiley India 
2. C++:   The Complete Reference- Schildt, McGraw-Hill Education (India)  
3. C++ and Object Oriented Programming – Jana, PHI Learning.  
4. Object Oriented Programming with C++   - Rajiv Sahay, Oxford 
5. Mastering C++    -    Venugopal, McGraw-Hill Education (India)  

 

 

 

 

 



 

                                     P.T.O 4 

 

 

 

CONTENTS 
Lecture 01:   Introduction 

Lecture 02:   Object Oriented Programming 

Lecture 03:   BASIC CONCEPTS OF OBJECTS ORIENTED PROGRAMMING 

Lecture 04:   BENEFITS  OF  OOP 

Lecture 05:   Basics of C++ 

Lecture 06:   Tokens 

Lecture 07:   Basic Data types in C++ 

Lecture 08:   Symbolic Constant 

Lecture 09:   Operators 

Lecture 10:   Control Structures 

Lecture 11:   Functions in C++ 

Lecture 12:   Function Overloading 

Lecture 13:   Class 

Lecture 14:   Member Function 

Lecture 15:   Nesting of Member function 

Lecture 16:   Array with Class 

Lecture 17:   Static Data Member 

Lecture 18:   Friendly functions 

Lecture 19:   Returning Objects 

Lecture 20:   Constructors 

Lecture 21:   Destructors 

Lecture 22 & 23:  Operator Overloading 

Lecture 24:   Type Conversion 

Lecture 25:   Class to Basic type 

Lecture 26:   Inheritance 

Lecture 27:   Multilevel Inheritance 

Lecture 28:   Hierarchical Inheritance  

Lecture 29:   Virtual Base Class 

Lecture 30:   Polymorphism 

Lecture 31:   Virtual functions 

Lecture 32:   Pure Virtual Functions 

Lecture 33:   C++ function overriding 

Lecture 34:   Exception Handling 

Lecture 35:   Array reference out of bound 

Lecture 36:   Containership in C++ 

Lecture 37:   Template 

Lecture 38:   Class Template 

Lecture 39:   Virtual destructors 

Lecture 40:   Managing Console I/O 

Lecture 41:   Namespaces 

Lecture 42:   New & Delete Operators 



 

                                     P.T.O 5 

Module-1: 

 

LECTURE-1 

 

Introduction: 
Programmers write instructions in various programming languages to perform their computation 

tasks such as: 

(i) Machine level Language 

(ii) Assembly level Language 

(iii) High level Language 

 

Machine level Language : 

Machine code or machine language is a set of instructions executed directly by a computer's central 

processing unit (CPU). Each instruction performs a very specific task, such as a load, a jump, or an 

ALU operation on a unit of data in a CPU register or memory. Every program directly executed by a 

CPU is made up of a series of such instructions. 

 

Assembly level Language : 

An assembly language (or assembler language) is a low-level programming language for a computer, 

or other programmable device, in which there is a very strong (generally one-to-one) correspondence 

between the language and the architecture's machine code instructions. Assembly language is 

converted into executable machine code by a utility program referred to as an assembler; the 

conversion process is referred to as assembly, or assembling the code. 

 

High level Language : 

High-level language is any programming language that enables development of a program in much 

simpler programming context and is generally independent of the computer's hardware architecture. 

High-level language has a higher level of abstraction from the computer, and focuses more on the 

programming logic rather than the underlying hardware components such as memory addressing and 

register utilization. 

 

The first high-level programming languages were designed in the 1950s. Now there are dozens of 

different languages, including Ada , Algol, BASIC, COBOL, C, C++, JAVA, FORTRAN, LISP, 

Pascal, and Prolog. Such languages are considered high-level because they are closer to human 

languages and farther from machine languages. In contrast, assembly languages are considered low-

level because they are very close to machine languages. 

 

The high-level programming languages are broadly categorized in to two categories: 

 

(iv) Procedure oriented programming(POP) language. 

(v) Object oriented programming(OOP) language. 

 

 
 
 
 
 
 



 

                                     P.T.O 6 

 
 
 
 
 Procedure  Oriented  Programming  Language  
 

 

In the procedure oriented approach, the problem is viewed as sequence of things to be done such as 

reading , calculation and printing. 

 

Procedure oriented programming basically consist of writing a list of instruction or actions for the 

computer to follow and organizing these instruction into groups known as functions.  

 

 

 

Main program 

 

 

    Function-1    Function-2           Function-3 

 
 
 
The disadvantage of the procedure oriented programming languages is: 

1. Global data access  

2. It does not model real word problem very well 

3. No data hiding 

 

 

 Global data           Global data 

 

 

       Function-1     Function-2    Function-3 

 

                                Local data     Local data    Local data 

 

 

Characteristics  of  procedure oriented programming: 

 
1. Emphasis is on doing things(algorithm) 

2. Large programs are divided into smaller programs known as functions. 

3. Most of the functions share global data 

4. Data move openly around the system from function to function 

5. Function transforms data from one form to another.  

6. Employs top-down approach in program design  

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 7 

 

 

 

LECTURE-2 

 

 

Object Oriented Programing 

 

“Object oriented programming as an approach that provides a way of modularizing programs by 

creating partitioned memory area for both data and functions that can be used as templates for 

creating copies of such modules on demand”. 

 

   Object  A          Object  B 

 

 

       Data               Data 

 

       Communication 

 

   Functions          Functions 

 

 

 

       Object C 

 

 

           Functions  

 

 

 

          Data 

 

 

 Features of the Object Oriented programming 

 

1. Emphasis is on doing rather than procedure. 

2. programs are divided into what are known as objects. 

3. Data structures are designed such that they characterize the objects. 

4. Functions that operate on the data of an object are tied together in the data 

structure. 

5. Data is hidden and can’t be accessed by external functions.  

6. Objects may communicate with each other through functions. 

7. New data and functions can be easily added.  

8. Follows bottom-up approach in program design. 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 8 

 

 

LECTURE-3  

 

BASIC CONCEPTS OF OBJECTS ORIENTED PROGRAMMING 

 

 

1. Objects  

2. Classes 

3. Data abstraction and encapsulation 

4. Inheritance 

5. Polymorphism 

6. Dynamic binding 

7. Message passing 

 

 

OBJECTS 

 

Objects are the basic run-time entities in an object-oriented system. They may represent a person, a 

place, a bank account, a table of data or any item that the program must handle. 

 

 The fundamental idea behind object oriented approach is to combine both data and function 

into a single unit and these units are called objects. 

 

 The term objects means a combination of data and program that represent some real word 

entity. For example: consider an example named Amit; Amit is 25 years old and his salary is 2500. 

The Amit may be represented in a computer program as an object. The data part of the object would 

be (name: Amit, age: 25, salary: 2500)  

 

 The program part of the object may be collection of programs (retrive of data, change age, 

change of salary). In general even any user –defined type-such as employee may be used. In the 

Amit object the name, age and salary are called attributes of the object. 

 

 

  Object: Student   STUDENT 

 

  DATA    Total 

         Name 

         Date-of-birth 

         Marks   Average 

   

FUNCTIONS  

         Total    

         Average   Display  

         Display    

  

CLASS: 

  

 A group of objects that share common properties for data part and some program part are 

collectively called as class. 

 

 In C ++ a class is a new data type that contains member variables and member functions that 

operate on the variables. 



 

                                     P.T.O 9 

 

DATA ABSTRACTION : 

 

 Abstraction refers to the act of representing essential features without including the back 

ground details or explanations. Classes use the concept of abstraction and are defined as size, width 

and cost and functions to operate on the attributes. 

 

DATA ENCAPSALATION : 

 

 The wrapping up of data and function into a single unit (called class) is known as 

encapsulation. The data is not accessible to the outside world and only those functions which are 

wrapped in the class can access it. These functions provide the interface between the objects data and 

the program. 

 

INHERITENCE : 

 

 Inheritance is the process by which objects of one class acquire the properties of another 

class. In the concept of inheritance provides the idea of reusablity. This mean that we can add 

additional features to an existing class with out modifying it. This is possible by desining a new class 

will have the combined features of both the classes. 

 

POLYMORPHISIM: 

 

 

 

Polymorphism means the ability to take more than one form. An operation may exhibit different 

instance. The behaviour depends upon the type of data used in the operation. 

 

A language feature that allows a function or operator to be given more than one definition. The types 

of the arguments with which the function or operator is called determines which definition will be 

used. 

 

Overloading may be operator overloading or function overloading. 

 

 

It is able to express the operation of addition by a single operater say ‘+’. When this is possible you 

use the expression  x + y to denote the sum of x and y, for many different types of x and y; integers , 

float and complex no. You can even define the + operation for two strings to mean the concatenation 

of the strings. 

 

 

 

 

 

 

 

DYNAMIC BINDING : 

 

  Binding refers to the linking of a procedure call to the code to the executed in 

response to the call. Dynamic binding means the code associated with a given procedure call is not 

known untill the time of the call at run-time. It is associated with a polymorphic reference depends 

upon the dynamic type of that reference. 

 



 

                                     P.T.O 10 

 

MESSAGE PASSING : 

 

  An object oriented program consists of a set of objects that communicate with each 

other. 

 

  A message for an object is a request for execution of a procedure and therefore will 

invoke a function (procedure) in the receiving object that generates the desired result. Message 

passing involves specifying the name of the object, the name of the function (message) and 

information to be sent. 

 

 

  Employee   .    Salary (name) 

 

 

 

     Object      Information 

         Message 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 11 

 

 

LECTURE- 4 

 

 

BENEFITS  OF  OOP: 
 

Oop offers several benefits to both the program designer and the user. Object-oriented contributes to 

the solution of many problems associated with the development and quality of software products. 

The principal advantages are : 

 

 

1. Through inheritance we can eliminate redundant code and extend the use of existing 

classes.  

2. We can build programs from the standard working modules that communicate with one 

another, rather than having to start writing the code from scratch. This leads to saving of 

development time and higher productivity. 

3. This principle of data hiding helps the programmer to build secure programs that can’t be 

invaded by code in other parts of the program. 

4. It is possible to have multiple instances of an object to co-exist with out any interference. 

5. It is easy to partition the work in a project based on objects. 

6. Object-oriented systems can be easily upgraded from small to large systems. 

7. Message passing techniques for communication between objects makes the interface 

description with external systems much simpler. 

8. Software complexity can be easily managed.  

 

APPLICATION OF OOP: 

 

 The most popular application of oops up to now, has been in the area of user interface 

design such as windows. There are hundreds of windowing systems developed using oop 

techniques. 

 

 Real business systems are often much more complex and contain many more objects 

with complicated attributes and methods. Oop is useful in this type of applications because it 

can simplify a complex problem. The promising areas for application of oop includes. 

 

1. Real – Time systems. 

2. Simulation and modeling  

3. Object oriented databases. 

4. Hypertext,hypermedia and expertext. 

5. Al and expert systems. 

6. Neural networks and parallel programming.  

7. Dicision support and office automation systems. 

8. CIM / CAM / CAD system. 

 

 

 

 

 

 



 

                                     P.T.O 12 

LECTURE-5 

 

 

Basics of C++ 

 

 

  C ++ is an object oriented programming language, C ++ was developed by Jarney 

Stroustrup at AT & T Bell lab, USA in early eighties. C ++ was developed from c and simula 67 

language. C ++ was early called ‘C with classes’. 

 

C++ Comments: 

 

  C++ introduces a new comment symbol //(double slash). Comments start with a 

double slash symbol and terminate at the end of line. A comment may start any where in the line and 

what ever follows till the end of line is ignored. Note that there is no closing symbol. 

 The double slash comment is basically a single line comment. Multi line comments can be 

written as follows:  

 

// this is an example of  

// c++ program  

// thank you  

The c comment symbols /* ….*/ are still valid and more suitable for multi line comments. 

 

/* this is an example of c++ program */ 

 

Output Operator: 
 

The statement cout <<”Hello, world” displayed the string with in quotes on the screen. The identifier 

cout can be used to display individual characters, strings and even numbers. It is a predefined object 

that corresponds to the standard output stream. Stream just refers to a flow of data and the standard 

Output stream normally flows to the screen display. The cout object, whose properties are defined in 

iostream.h represents that stream. The insertion operator << also called the ‘put to’ operator directs 

the information on its right to the object on its left. 

 

Return Statement: 

 

 In C++ main ( ) returns an integer type value to the operating system. Therefore every main ( 

) in C++ should end with a return (0) statement, otherwise a warning or an error might occur. 

 

Input Operator: 

 

The statement 

 cin>> number 1; 

is an input statement and causes. The program to wait for the user to type in a number. The number 

keyed in is placed in the variable number1. The identifier cin is a predefined object in C++ that 

corresponds to the standard input stream. Here this stream represents the key board. 

 

  The operator >> is known as get from operator. It extracts value from the keyboard 

and assigns it to the variable on its right. 

 

 

 

 



 

                                     P.T.O 13 

Cascading Of  I/O  Operator: 

 

cout<<”sum=”<<sum<<”\n”; 

cout<<”sum=”<<sum<<”\n”<<”average=”<<average<<”\n”; 

cin>>number1>>number2; 

 

 

Structure Of A Program : 

 

Probably the best way to start learning a programming language is by writing a program. Therefore, 

here is our first program:   

// my first program in C++ 

 

#include <iostream> 

using namespace std; 

 

int main () 

{ 

  cout << "Hello World!"; 

  return 0; 

}  

Output:-Hello World!  

The first panel shows the source code for our first program. The second one shows the result of the 

program once compiled and executed. The way to edit and compile a program depends on the 

compiler you are using. Depending on whether it has a Development Interface or not and on its 

version. Consult the compilers section and the manual or help included with your compiler if you 

have doubts on how to compile a C++ console program.   

The previous program is the typical program that programmer apprentices write for the first time, 

and its result is the printing on screen of the "Hello World!" sentence. It is one of the simplest 

programs that can be written in C++, but it already contains the fundamental components that every 

C++ program has. We are going to look line by line at the code we have just written:   

// my first program in C++  

This is a comment line. All lines beginning with two slash signs (//) are considered comments and do 

not have any effect on the behavior of the program. The programmer can use them to include short 

explanations or observations within the source code itself. In this case, the line is a brief description 

of what our program is.   

#include <iostream>  

Lines beginning with a hash sign (#) are directives for the preprocessor. They are not regular code 

lines with expressions but indications for the compiler's preprocessor. In this case the directive 

#include<iostream> tells the preprocessor to include the iostream standard file. This specific file 

(iostream) includes the declarations of the basic standard input-output library in C++, and it is 

included because its functionality is going to be used later in the program.  

using namespace std;   

All the elements of the standard C++ library are declared within what is called a namespace, the 

namespace with the name std. So in order to access its functionality we declare with this expression 

that we will be using these entities. This line is very frequent in C++ programs that use the standard 

library, and in fact it will be included in most of the source codes included in these tutorials.  

int main ()  

This line corresponds to the beginning of the definition of the main function. The main function is 

the point by where all C++ programs start their execution, independently of its location within the 

source code. It does not matter whether there are other functions with other names defined before or 

after it – the instructions contained within this function's definition will always be the first ones to be 



 

                                     P.T.O 14 

executed in any C++ program. For that same reason, it is essential that all C++ programs have a main 

function.   

The word main is followed in the code by a pair of parentheses (()). That is because it is a function 

declaration: In C++, what differentiates a function declaration from other types of expressions are 

these parentheses that follow its name. Optionally, these parentheses may enclose a list of parameters 

within them.   

Right after these parentheses we can find the body of the main function enclosed in braces ({}). 

What is contained within these braces is what the function does when it is executed.  

cout << "Hello World!";  

This line is a C++ statement. A statement is a simple or compound expression that can actually 

produce some effect. In fact, this statement performs the only action that generates a visible effect in 

our first program.   

cout represents the standard output stream in C++, and the meaning of the entire statement is to 

insert a sequence of characters (in this case the Hello World sequence of characters) into the standard 

output stream (which usually is the screen).   

cout is declared in the iostream standard file within the std namespace, so that's why we needed to 

include that specific file and to declare that we were going to use this specific namespace earlier in 

our code.   

Notice that the statement ends with a semicolon character (;). This character is used to mark the end 

of the statement and in fact it must be included at the end of all expression statements in all C++ 

programs  (one of the most common syntax errors is indeed to forget to include some semicolon after 

a statement).  

return 0;  

The return statement causes the main function to finish. return may be followed by a return code (in 

our example is followed by the return code 0). A return code of 0 for the main function is generally 

interpreted as the program worked as expected without any errors during its execution. This is the 

most usual way to end a C++ console program.  

You may have noticed that not all the lines of this program perform actions when the code is 

executed. There were lines containing only comments (those beginning by //). There were lines with 

directives for the compiler's  preprocessor (those beginning by #). Then there were lines that began 

the declaration of a function (in this case, the main function) and, finally lines with statements (like 

the insertion into cout), which were all included within the block delimited by the braces ({}) of the 

main function.   

The program has been structured in different lines in order to be more readable, but in C++, we do 

not have strict rules on how to separate instructions in different lines. For example, instead of   

int main () 

{ 

  cout << " Hello World!"; 

  return 0; 

}  

 

We could have written:   

 

int main ()  

{  

cout << "Hello World!";  

return 0;  

}  

All in just one line and this would have had exactly the same meaning as the previous code.   

In C++, the separation between statements is specified with an ending semicolon (;) at the end of 

each one, so the separation in different code lines does not matter at all for this purpose. We can 

write many statements per line or write a single statement that takes many code lines. The division of 



 

                                     P.T.O 15 

code in different lines serves only to make it more legible and schematic for the humans that may 

read it.  

  

Let us add an additional instruction to our first program:   

// my second program in C++ 

#include <iostream> 

using namespace std; 

 

int main () 

{ 

  cout << "Hello World! "; 

  cout << "I'm a C++ program"; 

  return 0; 

}  

 

Output:-Hello World! I'm a C++ program  

 

In this case, we performed two insertions into cout in two different statements. Once again, the 

separation in different lines of code has been done just to give greater readability to the program, 

since main could have been perfectly valid defined this way:   

int main ()  

{ 

 cout << " Hello World! ";  

cout << " I'm a C++ program "; 

 return 0;  

}  

 

We were also free to divide the code into more lines if we considered it more convenient:   

int main () 

{ 

  cout <<   "Hello World!"; 

  cout << "I'm a C++ program"; 

  return 0; 

}  

And the result would again have been exactly the same as in the previous examples.   

Preprocessor directives (those that begin by #) are out of this general rule since they are not 

statements. They are lines read and processed by the preprocessor and do not produce any code by 

themselves. Preprocessor directives must be specified in their own line and do not have to end with a 

semicolon (;).   

 

 

STRUCTURE OF C++ PROGRAM 

 

 Include files  

 Class declaration 

 Class functions, definition 

 Main function program 

 

Example :- 

 

  # include<iostream.h> 

 

  class person 



 

                                     P.T.O 16 

  { 

  char name[30]; 

  int age; 

  public: 

   void getdata(void); 

   void display(void); 

  }; 

 

 

void  person :: getdata ( void ) 

{ 

 cout<<”enter name”; 

 cin>>name; 

 cout<<”enter age”; 

 cin>>age; 

} 

 

void display() 

{ 

 cout<<”\n name:”<<name; 

 cout<<”\n age:”<<age; 

} 

 

int main( ) 

{ 

 

person p; 

p.getdata(); 

p.display(); 

return(0); 

 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 17 

LECTURE-6 

 

TOKENS: 

 

  The smallest individual units in program are known as tokens. C++ has the following 

tokens. 

 

i. Keywords 

ii. Identifiers 

iii. Constants 

iv. Strings  

v. Operators 

 

KEYWORDS: 

 

  The keywords implement specific C++ language feature. They are explicitly reserved 

identifiers and can’t be used as names for the program variables or other user defined program 

elements. The keywords not found in ANSI C are shown in red letter.  

 

 

C++ KEYWORDS: 
  

 

 Asm  double  new  switch 

 

 Auto  else  operator template 

 

 Break  enum  private  this 

 

 Case  extern  protected throw 

  

 Catch  float  public  try 

 

 Char  for  register typedef 

 

 Class  friend  return  union 

 

 Const  goto  short  unsigned 

 

 Continue if  signed  virtual 

 

 Default inline  sizeof  void 

 

 Delete  long  struet  while 

 

IDENTIFIERS: 

 

 

Identifiers refers to the name of variable , functions, array, class etc. created by programmer. Each 

language has its own rule for naming the identifiers.  

  

The following rules are common for both C and C++. 

  



 

                                     P.T.O 18 

1. Only alphabetic chars, digits and under score are permitted. 

2. The name can’t start with a digit. 

3. Upper case and lower case letters are distinct. 

4. A declared keyword can’t be used as a variable name. 

 

In ANSI C the maximum length of a variable is 32 chars but in c++ there is no bar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 19 

 

Lecture-7 

 

 

 

BASIC DATA TYPES IN C++ 

 

 

   C ++ Data Types 

 

  

     User defined type      Built in types  Derived type  

     Structure       Array 

     Union       Function 

     Class       pointer 

     enumeration  

 

 

 

       Integral type              void             Floating point 

 

 

 

 

        int char               float   double 

 

 

 

 

Both C and C++ compilers support all the built in types. With the exception of void the basic 

datatypes may have several modifiers preceding them to serve the needs of various situations. The 

modifiers signed, unsigned, long and short may applied to character and integer basic data types. 

However the modifier long may also be applied to double. 

 

 

Data types in C++ can be classified under various categories. 

 

 TYPE   BYTES  RANGE  

 

 char        1   -128 to – 127 

  

 usigned       1   0 to 265 

  

 sgned char       1   -128 to 127 

 

 int        2   -32768 to 32768 

 

 unsigned int       2   0 to 65535 

 

 singed int       2   -32768 to 32768 

  

 short int             2   -32768 to 32768 

  



 

                                     P.T.O 20 

  

 long int           4   -2147483648 to 2147483648 

 

 signed long int          4   -2147483648 to 2147483648 

 

 unsigned long int         4   0 to 4294967295 

 

 float           4   3.4E-38 to 3.4E+38 

 

 double           8   1.7E -308  to  1.7E +308 

 

 long double          10   3.4E-4932 to 1.1E+ 4932 

 

 

 

The type void normally used for: 

 

1) To specify the return type of function when it is not returning any value. 

2) To indicate an empty argument list to a function. 

 

Example: 

 

  Void  function(void); 

 

Another interesting use of void is in the declaration of genetic pointer 

 

Example: 

 

  Void  *gp; 

 

Assigning any pointer type to a void pointer without using a cast is allowed in both C and ANSI C. 

In ANSI C we can also assign a void pointer to a non-void pointer without using a cast to non void 

pointer type. This is not allowed in C ++. 

 

Example: 

 

  void  *ptr1; 

  

  void  *ptr2; 

 

Are valid statement in ANSI C  but not in C++. We need to use a cast operator. 

 

  ptr2=(char * )  ptr1; 

 

 

 
USER DEFINED DATA TYPES: 

 
STRUCTERS AND CLASSES 

 

We have used user defined data types such as struct,and union in C. While these more features have 

been added to make them suitable for object oriented programming. C++ also permits us to define 



 

                                     P.T.O 21 

another user defined data type known as class which can be used just like any other basic data type to 

declare a variable. The class variables are known as objects, which are the central focus of oops. 

 

ENUMERATED DATA TYPE: 

 

  An enumerated data type is another user defined type which provides a way for 

attaching names to number, these by increasing comprehensibility of the code. The enum keyword 

automatically enumerates a list of words by assigning them values 0,1,2 and soon. This facility 

provides an alternative means for creating symbolic. 

 

Example: 

 

      enum shape { circle,square,triangle} 

 

      enum colour{red,blue,green,yellow} 

 

      enum position {off,on} 

 

 The enumerated data types differ slightly in C++ when compared with ANSI C. In C++, the 

tag names shape, colour, and position become new type names. That means we can declare new 

variables using the tag names. 

 

  Example: 

 

    Shape ellipse;//ellipse is of type shape  

     

    colour background ; // back ground is of type colour 

 

ANSI C defines the types of enums to be ints. In C++,each enumerated data type retains its 

own separate type. This means that C++ does not allow an int  value to be automatically converted to 

an enum. 

 

Example:  

 

   colour background =blue; //vaid 

 

     colour background =7; //error in c++ 

 

     colour background =(colour) 7;//ok 

 

How ever an enumerated value can be used in place of an int value. 

 

  Example: 

 

   int c=red ;//valid, colour type promoted to int 

 

 By default, the enumerators are assigned integer values starting with 0 for the first 

enumerator, 1 for the second and so on. We can also write 

 

  enum color {red, blue=4,green=8}; 

 

  enum color {red=5,blue,green}; 

 



 

                                     P.T.O 22 

C++ also permits the creation of anonymous enums ( i.e, enums without tag names) 

 

  Example: 

 

   enum{off,on}; 

 

Here off is 0 and on is 1.these constants may be referenced in the same manner as regular constants. 

 

  Example: 

 

    int switch-1=off; 

 

    int switch-2=on; 

 

  ANSI C permits an enum defined with in a structure or a class, but the enum is 

globally visible. In C++ an enum defined with in a class is local to that class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 23 

LECTURE-8 

 

 

 

SYMBOLIC CONSTANT: 

 

There are two ways of creating symbolic constants in c++. 

 

1. using the qualifier const. 

2. defining a set of integer constants using enum keywords. 

 

In both C and C++, any value declared as const can’t be modified by the program in any way. 

In C++, we can use const in a constant expression. Such as 

 

  

 

const  int size = 10 ; 

 char  name (size) ; 

 

 

This would be illegal in C. const allows us to create typed constants instead of having to use #defme to 

create constants that have no type information. 

const size=10;  

Means  

const int size =10; 

C++ requires a const to be initialized. ANSI  C does not require an initializer, if none is  given, it 
initializes the const to 0. 

In C++ const values are local and in ANSI C const values are global .However they can be made local 
made local by declaring them as static .In C++  if we want to make const value as global then declare as extern 
storage class. 

Ex:  external const total=100;    Another method 
of naming integer constants is as follows:- 

enum {x,y,z};  
 

DECLARATION OF VARIABLES: 

In ANSIC C all the variable which is to be used in programs must be declared at the beginning of the 
program .But in C++ we can declare the variables any whose in the program where it requires .This makes the 
program much easier to write and reduces the errors that may be caused by having to scan back and forth. It 
also makes the program easier to understand because the variables are declared in the context of their use. 

 

 Example: 

main( )  

{ 

float x,average; 

     float  sum=0; 



 

                                     P.T.O 24 

     for(int i=1;i<5;i++) 

     { 

      cin>>x; 

      sum=sum+x 

      } 

      float average; 

average=sum/x; 

     cout<<average; 

        } 

 

 

 

 

REFERENCE VARIABLES: 

C++interfaces a new kind of variable known as the reference variable. A references variable 

provides an alias.(alternative name) for a previously defined variable. For example ,if we make the 

variable sum a reference to the variable total, then sum and total can be used interchangeably to represent 

the variuble.  

 A reference variable is created as follows: 

 Synatx: Datatype & reference –name=variable name;  

Example: 

float total=1500; 

float &sum=total;   
Here sum is the alternative name for variables total, both the variables refer to the same data object in the 
memory . 

A reference variable must be initialized at the time of declaration . 
Note that C++ assigns additional meaning to the symbol & here & is not an address operator 

.The notation float & means reference to float. 
 Example: 

int n[10]; 

int &x=n[10]; 

char &a=’\n’; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 25 

LECTURE-9 

 

 

 

OPERATORS IN C++ : 

 

C++ has a rich set of operators. All C operators are valid in C++ also. In addition. C++ 

introduces some new operators. 

  <<   insertion operator  

  >>   extraction operator  

  : :   scope resolution operator  

  : :*   pointer to member declarator  

    *   pointer to member operator  

   .*   pointer to member operator  

  Delete   memory release operator  

  Endl   line feed operator  

  New   memory allocation operator  

Setw   field width operator  

SCOPE RESOLUTION OPERATOR: 

Like C,C++ is also a block-structured language. Block -structured language. Blocks and 
scopes can be used in constructing programs. We know same variables can be declared in different 
blocks because the variables declared in blocks are local to that function. 

Blocks in C++ are often nested. 
Example: 

  ---------------- 
                          ---------------- 
 { 
  Int x =10; 
   --------------- 
   --------------- 
   { 
 
   Int x=1;       Block2 
   ---------------   Block1 
   --------------- 
   } 
  ---------------- 
  ---------------- 
 
 } 

Block2 contained in block l .Note that declaration in an inner block hides a declaration of the 
same variable in an outer block and therefore each declaration of x causes it to refer to a different data object . 
With in the inner block the variable x will refer to the data object declared there in. 



 

                                     P.T.O 26 

In C,the global version of a variable can't be accessed from with in the inner block. 

C++ resolves this problem by introducing a new operator  :: called the scope resolution operator .This can be 

used to uncover a hidden variable. 

   Syntax:  : :   variable –name; 

Example:  

#include <iostrcam.h> 

int m=10; 

main() 

{ 

int m=20; 

{ 

int k=m; 

int m=30; 

cout<<”we are in inner block”; 

cout<<"k="<<k<<endl; 

cout<<"m="<<m<<endl; 

cout<<":: m="<<:: m<<endl; 

} 

cout<<”\n we are in outer block \n”; 

cout<<"m="<<m<<endl; 

cout<<":: m="<<:: m<<endl; 

 } 

 

 

 

Memory Management Operator 

C uses malloc and calloc functions to allocate memory dynamically at run time . Similarly it uses the functions 
Free( ) to free dynamically allocated memory. We use dynamic allocation techniques when it is not known in 
advance how much of memory space as needed . 

C++ also support those functions it also defines two unary operators new and delete that 

perform the task of allocating and freeing the memory in a better and easier way. 

The new operator can be used to create objects of any type. Syntax:    pointer-

variable =new datatype; 

Example: 

p=new int; q=new int; 

Where p is a pointer of type int and q is a pointer of type float. 

int   *p=new int; 

 float *p=new float; 
 
Subsequently, the statements 

*p=25; 



 

                                     P.T.O 27 

*q=7.5; 

Assign 25 to the newly created int object and 7.5 to the float object.We can also initialize the memory 
using the new operator. 

Syntax: 

int *p=ne\v int(25); 

 float *q =new float(7.5); 

new can be used to create a memory space for any data type including user defined such as 

arrays,structures,and classes .The general form for a one-dimensional array is: 

pointer-variable =new data types [size]; 

    creates a memory space for an array of 10 integers. 

If  a data object is no longer needed, it is destroyed to release the memory space for reuse. 

 

Syntax: delete pointer-variable;  

 

Example: 

delete p; 
delete q; 

 
 

  If we want to free a dynamically allocated array ,we must use the following 

form of delete. 

delete [size] pointer-variable; 

                                                                             or  

 

delete [ ]  pointer variable; 

 

MANIPULATERS: 

 

Manipulators are operator that are used to format the data display. The most commonly manipulators are 

endl and setw. 

 The endl  manipulator, when used in an output statement, causes a line feed to be insert.(just like \n) 

Example: 

cout<<”m=”<<m<<endl; 

cout<<”n=”<<n<<endl; 

cout<<”p=”<<p<<endl; 

 If we assume the values of the variables as 2597,14 and 175 respectively 
m=2597; n=14; 
p=175 

It was want to print all nos in right justified way use setw which specify a common field width  
for  all the nos. 

 

Example:        cout<<setw(5)<<sum<<endl;
 cout<<setw(10)<<”basic”<<setw(10<<basic<<endl; 

Cout<<setw(10)<<”allowance”<<setw(10<<allowance<<endl; 
cout<<setw(10)<<”total=”<<setw(10)<<total; 



 

                                     P.T.O 28 

LECTURE-10 

 

CONTROL STRUCTURES: 

Like c,c++, supports all the basic control structures and implements them various control statements. 

The if statement: 

The if statement is impklemented in two forms: 

1. simple if statement 

2. if… else statement  

Simple if statement: 

if (condition) 

{ 

Action; 

} 

If.. else statement 

If (condition) 

Statment1 

Else  

Statement2 

 

 

 

The switch statement 

This is a multiple-branching statement where, based on a condition, the control is transferred to one of the many 

possible points; 



 

                                     P.T.O 29 

Switch(expr) 

{ 

case 1: 

action1; 

break; 

case 2: 

action2; 

break; 

.. 

.. 

default: 

message 

} 

 

The while statement: 

Syn: 

While(condition) 

{ 

Stements 

} 

 

 

 

 



 

                                     P.T.O 30 

The do-while statement: 

Syn: 

do  

{ 

Stements 

} while(condition); 

The for loop: 

for(expression1;expression2;expression3) 

{ 

Statements; 

Statements; 

} 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 31 

LECTURE-11 

 

FUNCTION IN C++ : 

The main( ) Functon ; 
 ANSI  does not specify any return type for the main ( ) function which is the starting point for the execution 

of a program . The definition of main( ) is :-  

  

main()   

{   

//main program statements   

 }   

This is property valid because the main () in ANSI C does not  return any value.  In C++, the main () returns a value of 
type int to the operating system. The functions that have a return value should use the return statement for terminating. 
The main () function in C++ is therefore defined as follows.                                                                                                                                          
 
 
 
 

   int main( ) 

   { 

   -------------- 

   -------------- 

   return(0) 

   }    

Since the return type of functions is int by default, the key word int in the main( ) header is optional. 

 

INLINE FUNCTION: 

 

To eliminate the cost of calls to small functions C++ proposes a new feature called inline function. 

An inline function is a function that is expanded inline when it is invoked .That is the compiler 

replaces the function call with the corresponding function code. 

  The inline functions are defined as follows:- 

 

inline function-header 

{ 

function body; 

} 

 Example:        inline double cube (double a) 

{  

return(a*a*a); 

} 

The above inline function can be invoked by statements like 

 c=cube(3.0);  

 d=cube(2.5+1.5); 

remember that the inline keyword merely sends a request, not a command to the compliler. The 

compiler may ignore this request if the function definition is too long or too complicated and compile 

the function as a normal function. 

Some of the situations where inline expansion may not work are: 

1.   For functions returning values if a loop, a switch or a go to exists. 



 

                                     P.T.O 32 

2.   for function s not returning values, if a return statement exists. 

3.   if functions contain static variables. 

4.   if inline functions are recursive,. 

Example:  

#include<iostream.h> 

#include<stdio.h>  

inline float mul(float x, float y) 

{ 

return(x*y);  

} 

inline double div(double p.double q) 

{ 

 return(p/q); 

} 

 

 

 

main( ) 

   { 

float a=12.345;  

float b=9.82;  

cout<<mul(a,b)<<endl;  

cout<<div (a,b)<<endl; 

   } 

 

output:- 

121.227898 

    1.257128 

DEFAULT ARGUMENT:- 

 

C++ allows us to call a function with out specifying all its arguments.In such cases, the 

function assigns a default value to the parameter which does not have a matching aguments in the 

function call.Default values are specified when the function is declared .The compiler looks at the 

prototype to see how many arguments a function uses and alerts the program for possible default 

values. 

Example:        float amount (float principle, int period ,float rate=0.15); 

The default value is specified in a manner syntactically similar to a variable 

initialization .The above prototype declares a default value of 0.15 to the argument rate. A 

subsequent function call like 

value=amount(5000,7); //one argument missing 

passes the value of 5000 to principle and 7 to period and then lets the function, use default value of 

0.15 for rate. 

The call:- value=amount(5000,5,0.12); 

 //no missing argument passes an explicite value of 0.12 rate.  

One important point to note is that only the trailing arguments can have default values. That is, we 

must add default from right to left .We cannot provide a default to a particular argument in the 

middle of an argument list. 

Example:-      int mul(int i, int j=5,int k=10);//illegal 

           int mul(int i=0,int j,int k=10);//illegal  

           int mul(int i=5,int j);//illegal  

           int mul(int i=2,int j=5,int k=10);//illegal 

Default arguments are useful in situation whose some arguments always have the some value. 

For example,bank interest may retain the same for all customers for a particular period of deposit. 



 

                                     P.T.O 33 

 

 

Example: 

#include<iostream.h> 

#include<stdio.h> 

 mainQ 

{ 

float amount; 

float value(float p,int n,float r=0.15); 

void printline(char ch=’*’,int len=40); 

printline( ); 

amount=value(5000.00,5); 

cout<<”\n final value=”<<amount<<endl; 

printline(‘=’); 

//function definitions 

float value (float p,int n, float r) 

{ 

float si; 

si=(p*n*r)/100; 

             return(si); 

} 

void printline (char ch,int len) 

{ 

for(inti=l;i<=len;i++) 

  cout<<ch<<endl; 

} 

output:- 

              * * * * * * * * * * * * * * * * 

              final value=10056.71613 

              = = = = = = = = = = = = = = =  

Advantage of providing the default arguments are: 

      1.  We can use default arguments to add new parameters to the existing functions. 

      2.   Default argument s can be used to combine similar functions into one. 

 

 

 

CONST ARGUMENT:- 

      In C++, an argument to a function can be declared as unit as const as shown 

below. 

int strlen(const char *p); 

int length(const string &s); 

The qualifier const tells the compiler that the function should not modify the argument .the 

compiler will generate an error when this condition is violated .This type of declaration is significant 

only when we pass arguments by reference or pointers. 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 34 

 

LECTURE-12 

 

 

FUNCTION OVERLOADING:  

 

                       Overloading refers to the use of the same thing for different purposes . C++ also 

permits overloading functions .This means that we can use the same function name to creates 

functions that perform a variety of different tasks. This is known as function polymorphism in oops. 

       Using the concepts of function overloading , a family of functions with one function 

name but with different argument lists in the functions call .The correct function to be invoked is 

determined by checking the number and type of the arguments but not on the function type. 

       For example an overloaded add() function handles different types of data as shown 

below. 

       //Declaration 

       int add(int a, int b); //prototype 1  

       int add (int a, int b, int c); //prototype 2 

       double add(double x, double y); //prototype 3  

       double add(double p , double q); //prototype 4 

 

 

       //function call 

       cout<<add(5,10); //uses prototype 1 

       cout<<add(15,10.0); //uses prototype 4 

       cout<<add(12.5,7.5); //uses prototype 3 

       cout<<add(5,10,15); //uses prototype 2 

       cout<<add(0.75,5); //uses prototype 5 

A function call first matches the prototype having the same no and type of arguments and then calls 

the appropriate function for execution. 

       The function selection invokes the following steps:- 

 

a) The compiler first tries to find an exact match in which the types of actual                    

arguments are the same and use that function . 

b) If an exact match is not found the compiler uses the integral promotions to the actual 

arguments such as : 

char to int  

float to double  

to find a match 

c)When either of them tails ,the compiler tries to use the built in conversions to the actual 

arguments and them uses the function whose match is unique . If the conversion is possible to have 

multiple matches, then the compiler will give error message. 

    Example: 

          long square (long n);     

double square(double x);  

A function call such as :-    square(lO) 

 

Will cause an error because int argument can be converted to either long or 

double .There by creating an ambiguous situation as to which version of square( )should be used. 

 

 

 

 

 



 

                                     P.T.O 35 

 

 

PROGRAM 

 

#include<iostream.h>  

int volume(double,int);  

double volume( double , int ); 

double volume(longint ,int ,int);  

main( ) 

{ 

cout<<volume(10)<<endl; 

cout<<volume(10)<<endl; cout<<volume(10)<<endl; 

}  

int volume( ini s) 

     { 

     return (s*s*s); //cube 

      } 

double volume( double r, int h) 

        { 

return(3.1416*r*r*h); //cylinder 

} 

long volume (longint 1, int b, int h) 

{ 

return(1*b*h); //cylinder 

     } 

 

output:- 1000 

         157.2595 

  112500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 36 

 

Module-2: 

 
LECTURE-13 

 

 

CLASS:- 

Class is a group of objects that share common properties and relationships .In C++, a class is 

a new data type that contains member variables and member functions that operates on the variables. 

A class is defined with the keyword class. It allows the data to be hidden, if necessary from external 

use. When we defining a class, we are creating a new abstract data type that can be treated like any 

other built in data type.        

Generally a class specification has two parts:- 

      a)        Class declaration 

      b)        Class function definition 

the class declaration describes the type and scope of its members. The class function 

definition describes how the class functions are implemented. 

 

Syntax:- 

    class class-name 

{ 

private: 

variable declarations; 

     function declaration ; 

public: 

     variable  declarations; 

function declaration; 

}; 

 The members that have been declared as private can be accessed only 

from with in the class. On the other hand , public members can be accessed from outside the class 

also. The data hiding is the key feature of oops. The use of keywords private is optional by default, 

the members of a class are private. 

The variables declared inside the class are known as data members and the functions 

are known as members mid the functions. Only the member functions can have access to the private 

data members and private functions. However, the public members can be accessed from the outside 

the class. The binding of data and functions together into a single class type variable is referred to as 

encapsulation. 

 

Syntax:- 

class item 

{ 

int member;  

float cost;  

public: 

void getldata (int a ,float b);  

void putdata (void); 

The class item contains two data members and two function members, the data 

members are private by default while both the functions are public by declaration. The function 

getdata() can be used to assign values to the member variables member and cost, and putdata() for 

displaying their values . These functions provide the only access to the data members from outside 

the class.          

 



 

                                     P.T.O 37 

 

 

 

 

 

CREATING OBJECTS: 

Once a class has been declared we can create variables of that type 

by using the class name. 

Example:  

item x; 

creates a variables x of type item. In C++, the class variables are known as objects. Therefore 

x is called an object of type item. 

 

 

 

item x, y ,z also possible.  

class item 

{ 

----------- 

-----------  

-----------  

}x ,y ,z; 

would create the objects x ,y ,z of type item.  

 

ACCESSING CLASS MEMBER: 

The private data of a class can be accessed only through the member functions of that 

class. The main() cannot contains statements that the access number and cost directly. 

Syntax: 

object name.function-name(actual arguments);  

Example:-        x. getdata(100,75.5); 

It assigns value 100 to number, and 75.5 to cost of the object x by 

implementing the getdata() function . 

similarly the statement   

x. putdata ( ); //would display the values of data members.  

x. number = 100 is illegal .Although x is an object of the type item to which number belongs , 

the number can be accessed only through a member function and not by the object directly. 

Example: 

class xyz 

{ 

Int x; 

Int y; 

public: 

int z; 

     }; 

     --------- 

     ---------- 

xyz p; 

p. x =0; error . x is private 

p, z=10; ok ,z is public 

 

 

 

 



 

                                     P.T.O 38 

 

 

 

 

LECTURE-14 

 

 

DEFINING MEMBER FUNCTION: 

Member can be defined in two places 

•    Outside the class definition 

•    Inside   the class function 

 

 

 

OUTSIDE THE CLASS DEFlNAT1ON; 

 

Member function that are declared inside a class have to be defined separately 

outside the class.Their definition are very much like the normal functions. 

 

An important difference between a member function and a normal 

function is that a member function incorporates a membership.Identify label in the header. The 

‘label’ tells the compiler which class the function belongs to. 

 

Syntax: 

 

return type class-name::function-name(argument  declaration ) 

{  

function-body 

} 

The member ship label class-name :: tells the compiler that the function function -

name belongs to the class class-name . That is the scope of the function is restricted to the class-

name specified in the header line. The :: symbol is called scope resolution operator. 

 

Example: 

void item :: getdata (int a , float b ) 

{ 

number=a; 

cost=b; 

}  

void item :: putdata ( void) 

{ 

cout<<”number=:”<<number<<endl; 

cout<<”cost=”<<cost<<endl; 

} 

The member function have some special characteristics that are often used in the program 

development. 

• Several different classes can use the same function name. The   "membership label" 

will resolve their scope, member functions can access the private data of the class 

.A non member function can't do so. 

• A member function can call another member function directly, without using the dot 

operator. 

 

 



 

                                     P.T.O 39 

 

INSIDE THE CLASS  DEF1NATION: 

Another method of defining a member function is to replace the function   declaration by the 

actual function definition inside the class . 

Example: 

class item 

{ 

Intnumber; 

float cost;  

public: 

void getdata (int a ,float b);  

void putdata(void) 

{ 

cout<<number<<endl; cout<<cost<<endl;  

} 

};  

A  C++   PROGRAM  WITH CLASS: 
      # include< iostream. h>  

         class item 

{        

int number;  

float cost;  

public: 

void getdata ( int a , float b); 

        void putdala ( void) 

{ 

cout<<“number:”<<number<<endl; 

cout<<”cost :”<<cost<<endl; 

} 

}; 

          void item :: getdata (int a , float b) 

{ 

number=a; 

cost=b; 

} 

main ( ) 

{ 

item x; 

cout<<”\nobjectx”<<endl;  

x. getdata( 100,299.95);  

x .putdata();  

item y; 

cout<<”\n object y”<<endl;  

y. getdata(200,175.5);  

y. putdata(); 

} 

 

 

 

 

 

Output: object x 

number   100 



 

                                     P.T.O 40 

cost=299.950012  

object -4  

cost=175.5 

 

 

 

Q. 
Write a simple program using class in C++ to input subject mark and prints it.  

ans: 

class marks 

{ 

private : 

int ml,m2; 

public: 

void getdata(); 

void displaydata(); 

}; 

void marks: :getdata() 

{ 

cout<<”enter 1st subject mark:”; 

cin>>ml; 

cout<<”enter 2nd subject mark:”; 

cin>>m2; 

} 

void marks: :displaydata() 

{ 

cout<<”Ist subject mark:”<<ml<<endl ;  

cout<<”2nd subject mark:”<<m2; 

} 

void main() 

{ 

clrscr(); 

marks x; 

x.getdata(); 

x.displaydata(); 

 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 41 

 

LECTURE-15 

 

 

 

NESTING OF MEMBER FUNCTION; 

 

A member function can be called by using its name inside another member function of the 

same class. This is known as nesting of member functions. 

 

#include <iostream.h>  

class set 

{ 

int m,n; 

public:  

void input(void); 

void display (void); 

void largest(void); 

}; 

int set::largest (void) 

{ 

if(m>n) 

return m;  

else 

return n; 

} 

void set::input(void) 

{ 

cout<<”input values of m and n:”; 

cin>>m>>n; 

} 

void set::display(void) 

{  

cout<<”largestvalue=”<<largest()<<”\n”; 

} 

void main() 

{ 

set A;  

A.input( );  

A.display( ); 

} 

 

 

 

output: 

 

Input values of m and n: 

 

3017 

 

largest value= 30 

 

 



 

                                     P.T.O 42 

 

 

Private member functions: 
 

Although it is a normal practice to place all the data items in a private section and all the functions in 

public, some situations may require contain functions to be hidden from the outside calls. Tasks such 

as deleting an account in a customer file or providing increment to and employee are events of 

serious consequences and therefore the functions handling such tasks should have restricted access. 

We can place these functions in the private section. 

 

 

A private member function can only be called by another function that is a member of its class. Even 

an object can not invoke a private function using the dot operator. 

 

 

Class sample 

{        

int m; 

void read (void); 

void write (void); 

}; 

if si is an object of sample, then 

s.read();  

is illegal. How ever the function read() can be   called by   the function update ( )   to 

update the value of m. 

void sample :: update(void) 

{  

read( ); 

} 

 

 

 

 

 

 

 



 

                                     P.T.O 43 

#include<iostream.h> 

class part 

{ 

private:       

int   modelnum,partnum; 

float cost;  

public: 

void setpart ( int mn, int pn ,float c) 

{ 

modelmim=mn;  

partnum=pn;  

cost=e; 

}  

void showpart ( ) 
{ 

Cout<<endl<<”model:”<<modelnum<<end1;  

Cout<<”num:”<< partnum <<endl  

Cout<<”cost:”<<”$”<cost; 

} 

}; 

void main() 

{  

part  pl,p2; 

p1.setpart(644,73,217.55);  

p2.setpart(567,89,789.55);  

pl.showpart();  

pl.showpart(); 

} 

 

output:- model:644 

num:73 

cost: $217550003 

model: 567 

num:89 

cost: $759.549988 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 44 

#indude<iostream.h> 

class distance 

{ 

private: 

int feet; 

float inches;  

public: 

void setdist ( int ft, float in) 

{ 

feet=ft; 

inches=in; 

}  

void    getdist() 

{ 

cout<<”enter feet:”; 

cin>>feet; 

cout<<”enter  inches:”; 

cin>>inches; 

} 

void showdist() 

{ 

cout<< feet<<”_”inches«endl; 

} 

}; 

void main( ) 

{ 

distance dl,d2; 

d1.setdist(1 1,6.25); 

d2.getdata(); 

cout<<endl<<”dist:”<<d 1 .showdist(); 

cout<<”\n”<<”dist2:”; 

d2.showdist(); 

} 

 

output:-          enter feet: 12 

            enter inches: 6.25  

                                              dist 1:”11’- 6.1.5”  

            dist 2:   12’- 6.25” 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 45 

 

 

LECTURE-16 

 

ARRAY WITH CLASSES: 
 

#include<iostream.h>      

#include<conio.h>  

class employee  

{  

private: 

char name[20];  

int age,sal;  

public: 

void getdata();  

void putdata(); 

}; 

void employee : : getdata () 

{ 

cout<<”enter name :”;  

cin>>name;  

cout<<”enter age :”;  

cin>>age; 

cout<<”enter salary:”;  

cin>>sal;  

return(0);  

} 

void employee : : putdata ( )  

{ 

cout<<name <<endl;  

cout<<age<<endl;  

cout<<sal<<endl;  

return(0);  

}        

int main() 

{ 



 

                                     P.T.O 46 

 

 

employee emp[5]:  

for( int i=0;i<5;i++) 

{ 

emp[i].getdata(); 

} 

cout<<endl; 

for(i=0;i<5;i++) 

{  

emp[i].putdata(); 

} 

getch();  

return(0); 

} 

 

 

ARRAY OF OBJECTS:- 

#include<iostream.h> 

#include<conio.h>  

class emp 

{ 

private: 

char name[20];  

int age,sal; 

public: 

void    getdata( );  

void    putdata( ); 

}; 

void    emp : : getdata( ) 

{ 

coul<<”enter empname”:   . 

cin>>name; 

cout<<”enter age:”<<endl; 

cin>>age; 

cout<<”enter salun :”;  



 

                                     P.T.O 47 

cin>>sal; 

}  

void     emp :: putdata () 

{ 

cout<<”emp name:”<<name<<endl;  

cout<<”emp age:”<<age<<endl;  

cout<<”emp salary:”<<sal; 

} 

 

 

void    main() 

{ 

emp     foreman[5];  

emp     engineer[5];  

for(int i=0;i<5;i ++) 

{ 

cout<<” for foreman:”;  

foreman[i] . getdata(); 

} 

cout<<endl;  

for(i=0;i<5;i++) 

{ 

Foreman[i].putdata(); . 

}  

for(int i=0;i<5;i ++) 

{ 

cout<<” for engineer:”; 

ingineer[i].getdata(); 

} 

for(i=0;i<5;i++) 

{ 

ingineer[i].putdata(); 

} 

getch(); 

return(0); 

} 



 

                                     P.T.O 48 

 

REPLACE AND SORT USING CLASS:- 

#include<iostream.h> 

#include<constream.h>  

class sort 

{ 

private: 

int nm[30]; 

public; 

void getdata(); 

void putdata(); 

}: 

void   sort :: getdata() 

      { 

int i,j,k; 

cout<<”enter 10 nos:” ; 

for(i=0;i<10;i++) 

{ 

cin>>nm[i]; 

} 

for(i=0;i<9;i++) 

{  

for(j=i+l:j<10:j++) 

{ 

if(nm[i]>nm[j]) 

{  

                     k=nm[i]; 

        nm[i]=nm[j]; 

                      nm[j]=k; 

} 

}  

 

void sort :: putdata() 

{     

int k;  

for(k=0;k<10;k++) 

{ 

cout<<num [k] <<endl ; 



 

                                     P.T.O 49 

} 

} 

int main() 

{  

clrscr(); 

sort   s;  

s.getdata();  

s.putdata();  

return(0); 

} 

ARRAY OF MEMBERS: 

#include<iostream.h> 

#include<constream.h>  

const   int m=50;  

class items 

{ 

int    item_code[m]; 

float item_price[m]; 

int count;  

public: 

void cnt(void) { count=0;} 

void get_item(void); 

void display_sum(void); 

void remove(void); 

void display _item(void); 

}; 

 

 

 

 

 

void items :: get_item (void) 

{ 

cout<<”enter itemcode:”;  

cin>> item_code[code];  

cout<<”enter item cost:”;  

cin>>item_price[count];  

count ++ ; 

} 

 

void items :: display _sum(void) 

{ 

float sum=0; 

for( int i=0;i<count;i++)  

{  



 

                                     P.T.O 50 

sum=sum+item_price[i]; 

} 

cout<< “\n total value:”<<sum<<endl; 

}  

int main ( ) 

{ 

items order; 

order.cnt();  

int x; 

do 

{     

cout<<”\nyou can do the following:”;  

cout<<”enter appropriate no:”;  

cout<<endl<<” 1 :add an item’’;  

cout<<endl<<”2: display total value :”;  

cout<<endl<<”3 : display an item”;  

cout<<endl<<”4 :display all item:”;  

cout<<endl<<”5 : quit:”;  

cout<<endl<<endl<<”what is your option:”;  

cin>>x; 

 

switch(x) 

        { 

case 1: order.get_item(); break; 

case 2: order.display_sum(); break; 

cose 3: order.remove(); break; 

case 4: order.display_item();break; 

case 5: break; 

default : cout<<”error in input; try again”; 

        }  

       } while(x!=5); 

}  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 51 

 

LECTURE-17 

 

 

 

STATIC   DATA  MEMBER: 

 

A data member of a class can be qualified as static . The 

properties of a static member variable are similar to that of a static variable. A static member variable 

has contain special characteristics. 

Variable has contain special characteristics:- 

1)       It is   initialized to zero when the first object of its class is   created.No other 

initialization is permitted. 

2)           Only one copy of that member is created for the entire class and is shared by 

all the objects of that class, no matter how many objects are created. 

3)        It is visible only with in the class but its life time is the entire program. Static 

variables are normally used to maintain values common to the entire class. 

For example a static data member can be used as a counter that records the 

occurrence of all the objects. 

 

int item :: count; // definition of static data member 

 

 

Note that the type and scope of each static member variable must be defined outside 

the class definition .This is necessary because the static data members are stored separately rather 

than as a part of an object. 

Example :- 

#include<iostream.h>  

class   item 

{ 

static int count; //count is static 

int number;  

public: 

void getdata(int a) 

.        { 

number=a;  

count++; 

   }  

 void getcount(void) 

  { 

cout<<”count:”;  

cout<<count<<endl; 

   } 

}; 

int item :: count ; //count defined  

int main( ) 

{ 

item a,b,c; 

a.get_count( ); 

b.get_count( ); 

c.get_count( ): 

a.getdata( ): 

b.getdata( ); 



 

                                     P.T.O 52 

c.getdata( ); 

cout«"after reading data : "«endl; 

a.get_count( ); 

b.gel_count( ); 

c.get count( );  

return(0); 

} 

 

The output would be 

count:0 

count:0 

count:0  

After reading data 

count: 3 

count:3 

count:3 

 

 

 

 

The static Variable count is initialized to Zero when the objects created . The count is 

incremented whenever the data is read into an object. Since the data is read into objects three times 

the variable count is incremented three times. Because there is only one copy of count shared by all 

the three object, all the three output statements cause the value 3 to be displayed. 

 

STATIC MEMBER  FUNCTIONS:- 

 

A member function that is declared static has following properties :- 

1.        A static function can have access to only other static members declared in the 

same class. 

2.        A static member function can be called using the class name as follows:- 

class - name :: function - name;  

Example:- 

#include<iostream.h>  

class test 

{ 

int code; 

static int count; // static member variable 

public: 

void set(void) 

{ 

code=++count; 

} 

void showcode(void) 

{ 

cout<<”object member : “<<code<<end; 

}  

static void showcount(void) 

{ cout<<”count=”<<count<<endl; } 

}; 

int test:: count;  

int main() 

{ 



 

                                     P.T.O 53 

test t1,t2; 

t1.setcode( ); 

t2.setcode( ); 

test :: showcount ( );        ' 

test t3; 

t3.setcode( ); 

test:: showcount( ); 

t1.showcode( ) ; 

t2.showcode( ); 

t3.showcode( ); 

return(0); 

 

 

 

 

output:-  count : 2  

   count: 3  

object number 1  

object number 2  

object number 3 

 

 

OBJECTS AS FUNCTION ARGUMENTS 

 

Like any other data type, an object may be used as A function argument. This can cone in two ways 

     1.  A copy of the entire object is passed to the function. 

     2.  Only the address of the object is transferred to the function 

The first method is called pass-by-value. Since a copy of the object is passed to the function, any 

change made to the object inside the function do not effect the object used to call the function. 

The second method is called pass-by-reference . When an address of the object is passed, the called 

function works directly on the actual object used in the call. This means that any changes made to the 

object inside the functions will reflect in the actual object .The pass by reference method is more 

efficient since it requires to pass only the address of the object and not the entire object. 

 

 

Example:- 

#include<iostream.h>  

class time 

{ 

int hours;  

int minutes; 

  public: 

void gettime(int h, int m) 

{ 

hours=h;  

minutes=m; 

}     

void puttime(void) 

{ 

cout<< hours<<”hours and:”; 

 

cout<<minutes<<”minutes:”<<end; 

} 



 

                                     P.T.O 54 

void sum( time ,time); 

}; 

void time :: sum (time t1,time t2)      . 

{ 

minutes=t1.minutes + t2.minutes; 

hours=minutes%60;  

minutes=minutes%60;  

hours=hours+t 1.hours+t2.hours; 

} 

 

int main() 

{ 

time T1,T2,T3; 

T1.gettime(2,45); 

T2.gettime(3,30); 

T3.sum(T1,T2); 

cout<<”T1=”; 

T1.puttime( ); 

cout<<”T2=”; 

T2.puttime( ); 

cout<<”T3=”; 

T3.puttime( ); 

return(0); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 55 

LECTURE-18 

 

 

FRIENDLY FUNCTIONS:- 

We know private members can not be accessed from outside the class. That is a non - 

member function can't have an access to the private data of a class. However there could be a case 

where two classes manager and scientist, have been defined we should like to use a function income-

tax to operate on the objects of both these classes. 

In such situations, c++ allows the common function lo be made friendly with both the classes , there 

by following the function to have access to the private data of these classes .Such a function need not 

be a member of any of these classes. 

To make an outside function "friendly" to a class, we have to simply declare this function as a friend 

of the classes as shown below : 

 

class ABC 

{ 

--------- 

--------- 

public: 

 -------- 

 ---------- 

friend void xyz(void); 

     }; 

 

The function declaration should be preceded by the keyword friend , The function is defined else 

where in the program like a normal C ++ function . The function definition does not use their the 

keyword friend or the scope operator :: . The functions that are declared with the keyword friend are 

known as friend functions. A function can be declared as a friend in any no of classes. A friend 

function, as though not a member function , has full access rights to the private members of the class. 

 

A friend function processes certain special characteristics: 

a. It is not in the scope of the class to which it has been declared as friend. 

b. Since it is not in the scope of the class, it cannot be called using the object of that 

class. It can be invoked like a member function without the help of any object. 

c. Unlike member functions. 

 

   Example: 

 

#include<iostream.h>  

class sample 

{ 

int a; 

int b;  

public: 

void setvalue( ) { a=25;b=40;} 

friend float mean( sample s);  

} 

float     mean (sample s) 

{ 

return (float(s.a+s.b)/2.0); 

} 

int  main ( ) 

     { 



 

                                     P.T.O 56 

sample x; 

x . setvalue( ); 

cout<<”mean value=”<<mean(x)<<endl; 

return(0); 

 

} 

 

output: 

mean value : 32.5 

 

A function friendly to two classes 

#include<iostream.h>  

class abc;  

class xyz 

{ 

int x;  

public: 

void setvalue(int x) { x-= I; }  

friend void max (xyz,abc); 

}; 

class abc 

{ 

int a;  

public: 

void setvalue( int i) {a=i; }  

friend void max(xyz,abc); 

}; 

 

 

void  max( xyz m, abc n) 

{ 

if(m . x >= n.a) 

cout<<m.x; 

else 

cout<< n.a; 

} 

 

int main( ) 

{ 

abc j; 

j . setvalue( 10); 

xyz   s; 

s.setvalue(20); 

max( s , j ); 

return(0); 

}  

SWAPPING  PRIVATE DATA OF CLASSES: 

 

#include<iostream.h> 

 

class class-2;  

class class-1 

{ 



 

                                     P.T.O 57 

int value 1; 

public: 

void indata( int a) { value=a; } 

void display(void) { cout<<value<<endl; } 

friend   void exchange ( class-1 &, class-2 &); 

}; 

 

class class-2 

{ 

int value2; 

public: 

void indata( int a) { value2=a; } 

void display(void) { cout<<value2<<endl; } 

friend void exchange(class-l & , class-2 &); 

}; 

void exchange ( class-1 &x, class-2 &y) 

{ 

int temp=x. value 1; 

x. value I=y.valuo2;  

y.value2=temp; 

} 

 

int main( ) 

{ 

class-1 c1; 

class-2 c2; 

c1.indata(l00); 

c2.indata(200); 

cout<<”values before exchange:”<<endl; 

c1.display( ); 

c2.display( ); 

exchange (c1,c2); 

cout<<”values after  exchange :”<< endl; 

c1. display ( ); 

c2. display ( ); 

return(0); 

} 

output: 

values before exchange  

100  

200 

values after exchange  

200 

100  

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 58 

         PROGRAM FOR  ILLUSTRATING THE USE OF FRIEND FUNCTION: 

 

#include< iostream.h>  

class account1;  

class  account2 

{ 

private: 

int balance;  

public: 

account2( ) { balance=567; }  

void showacc2( ) 

{ 

cout<<”balanceinaccount2 is:”<<balance<<endl;  

friend int transfer (account2 &acc2, account1 &acc1,int amount); 

}; 

class acount1 

{  

private: 

int balance;  

public: 

account1 ( ) { balance=345; } 

 

 

void showacc1 ( ) 

{      

cout<<”balance in account1 :”<<balance<<endl;  

}   

friend int transfer (account2 &acc2, account1 &acc1 ,int amount); 

}; 

 

int transfer ( account2 &acc2, account1 & acc1, int amount)  

{ 

if(amount <=accl . bvalance) 

{ 

acc2. balance + = amount;  

acc1 .balance - = amount; 

} 

else 

return(0); 

} 

int main() 

{ 

account1    aa; 

account2    bb; 

 

 

 

 

cout << “balance in the accounts before transfer:” ; 

aa . showacc1( ); 

bb . showacc2( ); 

cout << “amt transferred from account1 to account2 is:”; 

cout<<transfer ( bb,aa,100)<<endl; 



 

                                     P.T.O 59 

cout<< “ balance in the accounts after the transfer:”; 

aa . showacc 1 ( ); 

bb. showacc 2( ); 

     return(0); 

} 

output: 

balance in the accounts before transfer 

balance in account 1 is 345 

balance in account2  is 567  

and transferred from account! to account2 is 100 

balance in  account 1 is 245 

balance in   account2 is 667 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 60 

 

LECTURE-19 

 

 

 

RETURNING   OBJECTS: 

# include< iostream,h>  

class complex 

{ 

float x;  

float y; 

public: 

void input( float real , float imag) 

{ 

x=real; 

y=imag; 

} 

friend  complex sum( complex , complex);  

void    show ( complex ); 

}; 

complex   sum ( complex c1, complex c2)  

{ 

complex c3; 

c3.x=c1.x+c2.x; 

c3.y=c1.y+c2.y; 

return c3;} 

 

 

 

void complex   :: show ( complex c) 

{ 

cout<<c.x<<” +j “<<c.y<<endl; 

 } 

 

int  main( ) 

{ 

complex a, b,c; 

a.input(3.1,5.65); 

b.input(2.75,1.2); 

c=sum(a,b); 

cout <<” a=”; a.show(a); 

cout <<” b= “; b.show(b); 

cout <<” c=” ; c.show(c); 

return(0); 

} 

output: 

a =3.1 + j 5.65  

b= 2.75+ j 1.2  

c= 5.55 + j 6.85 

 

 

 

 



 

                                     P.T.O 61 

 

POINTER TO MEMBERS; 

It is possible to take the address of a member of a class and assign it to a pointer. The address 

of a member can be obtained by applying the operator & to a “fully qualified” class member name. 

 

A class member pointer can be declared using the operator :: * with the class name.  

For Example: 

class A 

{  

private: 

int m;  

public: 

void show( ); 

};  

We can define a pointer to the member m as follows : 

int A :: * ip = & A :: m 

The ip pointer created thus acts like a class member in that it must be invoked with a class object. In 

the above statement. The phrase A :: * means “pointer - to - member of a class” . The phrase & A :: 

m means the “ Address of the m member of a class” 

 

The following statement is not valid : 

int   *ip=&m ; // invalid 

This is because m is not simply an int type data. It has meaning only when it is associated 

with the class to which it belongs. The scope operator must be applied to both the pointer and the 

member. 

 

The   pointer ip can now be used to access the   m inside the member function (or 

friend function). 

 

Let us   assume that   “a”  is an object of “ A” declared in a member function . We can 

access "m" using the pointer ip as follows. 

cout<< a . * ip;  

cout<< a.m;  

ap=&a; 

cout<< ap-> * ip;  

cout<<ap->a; 

The deferencing operator ->* is used as to accept a member when we use pointers to 

both the object and the member. The dereferencing  operator. .* is used when the object itself is used 

with the member pointer. Note that * ip is used like a member name. 

We can also design pointers to member functions which ,then can be invoked using 

the deferencing operator in the main as shown below.  

(object-name.* pointer-to-member function)  

(pointer-to -object -> * pointer-to-member function)  

The   precedence   of    ( ) is higher than that of   .*   and ->* , so the parenthesis are 

necessary. 

 

 

 

 

 

 

 

 



 

                                     P.T.O 62 

 

DEREFERENCING OPERATOR: 

#include<iostream.h>  

class M 

{ 

int x;  

int y;  

public: 

void set_xy(int a,int b) 

{         

x=a;  

y=b; 

} 

friend int sum(M); 

}; 

 

int sum (M m) 

{ 

int M :: * px= &M :: x; //pointer to member x 

 

 

 

 

 

int M :: * py- & m ::y;//pointer to y 

M * pm=&m; 

int s=m.* px + pm->py; 

return(s); 

} 

int main ( ) 

{ 

M m; 

void(M::*pf)(int,int)=&M::set-xy;//pointer to function set-xy (n*pf)( 10,20); 

//invokes set-xy  

cout<<”sum=:”<<sum(n)<<cncil;  

n *op=&n; //point to object n  

( op->* pf)(30,40); // invokes set-xy  

cout<<”sum=”<<sum(n)<<end 1 ;  

return(0); 

  } 

output: 

sum= 30  

sum=70 

 

 

 

 

 

 

 

 

 



 

                                     P.T.O 63 

 
LECTURE-20 

 

 

 

CONSTRUCTOR: 

A constructor is a special member function whose task is to initialize the objects of its class . 

It is special because its name is the same as the class name. The constructor is invoked when ever an 

object of its associated class is created. It is called constructor because it construct the values of data 

members of the class. 

 

A constructor is declared and defined as follows: 

 //'class with a constructor  

class integer 

{ 

int m,n:  

public: 

integer! void);//constructor declared 

  ------------ 

  ------------ 

 }; 

integer :: integer(void) 

{ 

m=0;  

n=0;   

} 

 

 

 

When a class contains a constructor like the one defined above it is guaranteed that an 

object created by the class will be initialized automatically. 

 

For example:- 

Integer int1;   //object int 1 created 

This declaration not only creates the object int1 of type integer but also    initializes its 

data members m and n to zero. 

 

A constructor that accept no parameter is called the default 

constructor. The default constructor for class A is A :: A( ). If no such constructor is 

 defined, then the compiler supplies a default constructor .  

Therefore a statement such as :- 

A  a  ;//invokes the default constructor of the compiler of the 

compiler to create the object   "a" ; 

 

 

 

Invokes the default constructor of the compiler to create the object a.  

The constructor functions have some characteristics:- 

 They should be declared in the public section . 

 They are invoked automatically when the objects are created. 

 They don't have return types, not even void and therefore 

 they cannot return values.  

  They cannot be inherited , though a derived class can call 



 

                                     P.T.O 64 

 the base class constructor . 

 Like other C++ function , they can have default arguments, 

 Constructor can't be virtual. 

 An object with a constructor can't be used as a member of 

       union.  

Example of default   constructor: 

 

#include<iostream.h> 

#include<conio.h> 

 

class abc 

{ 

private: 

char nm[];  

public: 

abc ( ) 

{ 

cout<<”enter your name:”;      

cin>>nm; 

}  

void display( ) 

 

 

 

 

 

{ 

cout<<nm; 

} 

 

}; 

 

int main( ) 

{ 

clrscr( );  

abc d;  

d.display( );  

getch( );  

return(0); 

}  

PARAMETERIZED CONSTRUCTOR:- 

the constructors that can take arguments are called parameterized constructors. 

Using parameterized constructor we can initialize the various data elements of different objects with 

different values when they are created. 

Example:- 

class integer 

{ 

int m,n; 

public: 

integer( int x, int y); 

    -------- 

    --------- 

   }; 



 

                                     P.T.O 65 

integer:: integer (int x, int y) 

{ 

m=x;n=y; 

} 

the argument can be passed to the constructor by calling the constructor 

implicitly. 

integer int 1 = integer(0,100); // explicit call  

integer int 1(0,100);     //implicite call 

 

CLASS WITH CONSTRUCTOR:- 

 

 

#include<iostream.h> 

class integer 

{ 

int m,n;  

public: 

integer(int,int); 

void display(void) 

 

 

 

 

{ 

cout<<”m=:”<<m ;  

cout<<”n=”<<n; 

   } 

  };  

integer :: integer( int x,int y) // constructor defined 

{ 

m=x; 

n=y; 

    }

int main( )  

{ 

integer int 1(0, 100);    // implicit call  

integer int2=integer(25,75);  

cout<<” \nobjectl “<<endl; 

int1.display( ); 

cout<<” \n object2 “<<endl; 

int2.display( ); 

   } 

output: 

object 1 

m=0 

n=100 

object2 

m=25 

n=25 

  



 

 

Example:- 

#include<iostream.h> 

#include<conio.h>  

class abc 

{  

private: 

char nm [30];  

int age; 

     public: 

abc ( ){ }// default  

abc ( char x[], int y);  

void get( ) 

{ 

cout<<”enter your name:”; 

cin>>nm; 

cout<<” enter your age:”; 

cin>>age; 

       } 

void display( ) 

{ 

cout<<nm«endl; 

cout«age; 

} 

}; 

abc : : abc(char x[], int y)  

{ 

strcpy(nm,x);  

age=y; 

}  

void main( ) 

{  

abc 1; 

abc m=abc("computer",20000); 

l.get(); 

l.dispalay( ); 

m.display ( ); 

getch( ); 

    } 

 

 

OVERLOADED CONSTRUCTOR:- 

#include<iostream.h> 

#include<conio.h> 

class sum                                                                                         

{                                                       

private;                                                                                                          

int a; 

int b; 

int c; 

float d; 

double e;  

public: 

sum ( ) 



 

 

{ 

cout<<”enter a;”; 

cin>>a; 

cout<<”enter b;”;  

cin>>b;  

cout<<”sum= “<<a+b<<endl; 

} 

sum(int a,int b); 

sum(int a, float d,double c); 

}; 

sum :: sum(int x,int y) 

{ 

a=x; 

b=y; 

} 

sum :: sum(int p, float q ,double r) 

{ 

a=p;  

d=q;  

e=r; 

}       

void main( ) 

{ 

clrscr( ); 

sum 1; 

sum m=sum(20,50); 

sum n= sum(3,3.2,4.55); 

getch( ); 

} 

 

output:  

enter a : 3  

enter b : 8  

sum=11  

sum=70  

sum=10.75 

 

 

COPY CONSTRUCTOR: 

A copy constructor is used to declare and initialize an object from another object. 

Example:- 

the statement 

integer 12(11);  

would define the object 12 and at the same time initialize it to the values of 11. 

Another form of this statement is : integer 12=11; 

The process of initialization through a copy constructor is known as copy initialization. 

Example:- 

#incliide<iostream.h>               

class code                               

{  

int id; 

 

 



 

 

 

public 

code ( ) { } //constructor 

code (int a) { id=a; } //constructor 

code(code &x) 

{ 

Id=x.id;  

} 

void display( ) 

{ 

cout<<id; 

   } 

  }; 

int main( ) 

{ 

code A(100); 

code B(A); 

code C=A; 

code D; 

D=A; 

cout<<” \n id of A :”; A.display( ); 

cout<<” \nid of B :”; B.display( ); 

cout<<” \n id of C:”; C.display( ); 

cout<<” \n id of D:”; D.display( ); 

} 

 

 

output :- 

id of A:100  

id of B:100  

id of C:100  

id of D:100 

 

 

DYNAMIC CONSTRUCTOR:- 

The constructors can also be used to allocate memory while creating objects . 

This will enable the system to allocate the right amount of memory for each object when the objects 

are not of the same size, thus resulting in the saving of memory. 

Allocate of memory to objects at the time of their construction is known as dynamic 

constructors of objects. The memory is allocated with the help of new operator. 

Example:- 

  #include<iostream.h> 

#include<string.h> 

class string  

{ 

char *name; 

 

 

 

 

int    length;  

public: 

string ( ) 



 

 

{ 

length=0; 

name= new char [length+1]; /* one extra for \0 */ 

}  

string( char *s) //constructor 2 

{ 

length=strlen(s);  

name=new char [length+1];  

strcpy(name,s); 

}  

void display(void) 

{ 

cout<<name<<endl; 

} 

void join(string &a .string &b) 

{ 

length=a. length +b . length; 

delete name; 

name=new char[length+l]; /* dynamic allocation */ 

strcpy(name,a.name); 

strcat(name,b.name); 

} 

 }; 

int main( ) 

{ 

char * first = “Joseph” ; 

string name1(first),name2(“louis”),naine3( “LaGrange”),sl,s2; 

sl.join(name1,name2); 

s2.join(s1,name3); 

namel.display( ); 

name2.display( ); 

name3.display( ); 

s1.display( );  

s2.display( ); 

} 

output :- 

Joseph 

Louis 

language 

Joseph Louis 

Joseph Louis Language  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE-21 

 

 

 

DESTRUCTOR:- 

 

A destructor, us the name implies is used to destroy the objects that have been created by a 

constructor. Like a constructor, the destructor is a member function whose name is the same as the 

class name but is preceded by a tilde. 

 

For Example:- 

~ integer( ) { } 

A destructor never takes any argument nor does it return any value. It will be invoked 

implicitly by the compiler upon exit from the program to clean up storage that is no longer 

accessible. It is a good practice to declare destructor in a program since it releases memory space for 

future use. 

Delete is used to free memory which is created by new.  

Example:- 

matrix : : ~ matrix( ) 

{ 

for(int i=0; i<11;i++) 

delete p[i];  

delete p; 

   } 

 

 

IMPLEMENTED OF DESTRUCTORS:- 

#include<iostream.h>  

int count=0;  

class alpha 

{ 

public: 

alpha( ) 

{ 

count ++; 

cout<<”\n no of object created :”<<endl; 

} 

~alpha( ) 

{ 

cout<<”\n no of object destroyed :” <<endl;  

coutnt--; 

} 

}; 

 

 

 

int main( ) 

   { 

 

cout<<” \n \n enter main \n:”;  

alpha A1,A2,A3,A4; 

{ 

cout<<” \n enter block 1 :\n”; 



 

 

alpha A5; 

} 

{ 

cout<<” \n \n enter block2 \n”;  

alpha A6; 

} 

cout<<\n re-enter main \n:”;  

return(0); 

} 

 

output:- 

enter main 

no of object created 1  

no of object created 2  

no of object created 3  

no of object created 4  

enter block 1  

no of object created 5  

no of object destroyed 5  

enter block 2  

no of object created 5  

no of object destroyed 5  

re-enter  main  

no of object destroyed 4  

no of object created 3  

no of object created 2  

no of object created 1 

 

Example :- 

#include<iostream.h>  

int x=l;  

class abc 

{  

public: 

abc( )  

{ 

x--; 

cout<<”construct the no”<<x<<endl; 

} 

~abc( ) 

    { 

cout<<”destruct  the no:”<<x<<endl; 

x--; 

} 

}; 

int main( ) 

{ 

abc I1,I2,I3,I4; 

cout«ll«12«13«l4«endl; 

return(0); 

} 

 

 



 

 

LECTURE-22 & 23 

 

 

OPERATOR OVERLOADING:- 

Operator overloading provides a flexible option for the creation of new definations for most 

of the C++ operators. We can overload all the C++ operators except the following: 

 

 Class members access operator (. , .*) 

 Scope resolution operator (: :) 

 Size operator(sizeof) 

 Condition operator (? :) 

Although the semantics of an operator can be extended, we can't change its syntax, the 

grammatical rules that govern its use such as the no of operands precedence and associativety. For 

example the multiplication operator will enjoy higher precedence than the addition operator. 

When an operator is overloaded, its original meaning is not lost. For example, 

the operator +, which has been overloaded to add two vectors, can still be used to add two integers. 

 

DEFINING OPERATOR OVERLOADING: 

To define an additional task to an operator, we must specify what it means in 

relation to the class to which the operator is applied . This is done with the help of a special function 

called operator function, which describes the task. 

Syntax:- 

return-type class-name :: operator op( arg-list) 

{ 

function body 

} 

Where return type is the type of value returned by the specified operation and 

op is the operator being overloaded. The op is preceded by the keyword operator, operator op is the 

function name. 

operator functions must be either member function, or friend 

function. A basic defference between them is that a friend function will have only one argument for 

unary operators and two for binary operators, This is because the object used to invoke the member 

function is passed implicitly and therefore is available for the member functions. Arguments may be 

either by value or by reference. 

 

operator functions are declared in. the class using prototypes as follows:- 

  vector operator + (vector); /./ vector addition 

vector operator-( );   //unary minus 

friend vector operator + (vuelor, vector); // vector add 

friend vector operator -(vector);      // unary minus 

vector operator - ( vector &a); // substraction 

int operator = =(vector);       //comparision 

friend int operator = =(vector ,vrctor); // comparision 

vector is a data type of class and may represent both magnitude and direction or a series 

of  points called elements. 

The process of overloading involves the following steps:- 

1. Create a class that defines the data type that is used in the overloading  operation. 

2. Declare the operator function operator op() in the public part of the class 

3. It may be either a member function  or friend function. 

4. Define the operator function to implement the required operations. 

 



 

 

Overloaded operator functions can be invoked by expressions such as  

op x or  x op; 

for unary operators and  

x op y  

for binary opearators. 

operator op(x); 

for unary operator using friend function 

operator op(x,y); 

for binary operator usinf friend function. 

 

Unary – operator overloading(using member function): 

class abc 

{ 

int m,n; 

public: 

abc() 

{ 

m=8; 

n=9; 

} 

void show() 

{ 

cout<<m<<n; 

} 

operator -- () 

{ 

--m; 

--n; 

} 

}; 

void main() 

{ 

abc x; 

x.show(); 

--x; 



 

 

x.show(); 

} 

 

Unary – - operator overloading(using friend function): 

class abc 

{ 

int m,n; 

public: 

abc() 

{ 

m=8; 

n=9; 

} 

void show() 

{ 

cout<<m<<n; 

} 

friend operator --(abc &p); 

}; 

operator -- (abc &p) 

{ 

--p.m; 

--p.n; 

} 

}; 

void main() 

{ 

abc x; 

x.show(); 

operator--(x); 

x.show(); 

} 

 

 

 

 



 

 

Unary operator+ for adding two complex numbers (using member function) 
 

class complex 

{ 

float real,img; 

public: 

complex() 

{ 

 real=0; 

 img=0; 

} 

complex(float r,float i) 

{ 

real=r; 

img=i; 

} 

void show() 

{ 

cout<<real<<”+i”<<img; 

} 

complex operator+(complex &p) 

{ 

 complex w; 

 w.real=real+q.real; 

 w.img=img+q.img; 

 return w; 

} 

}; 

void main() 

{ 

complex s(3,4); 

complex t(4,5); 

complex m; 

m=s+t; 

s.show(); 

t.show(); 

m.show(); 

} 

Unary operator+ for adding two complex numbers (using friend  function) 
 

class complex 

{ 

float real,img; 

public: 

complex() 

{ 

 real=0; 

 img=0; 

} 

complex(float r,float i) 

{ 

real=r; 

img=i; 



 

 

} 

void show() 

{ 

cout<<real<<”+i”<<img; 

} 

friend complex operator+(complex &p,complex &q); 

}; 

complex operator+(complex &p,complex &q) 

{ 

 complex w; 

 w.real=p.real+q.real; 

 w.img=p.img+q.img; 

 return w; 

} 

}; 

void main() 

{ 

complex s(3,4);complex t(4,5); 

complex m; 

m=operator+(s,t); 

s.show();t.show(); 

m.show(); 

} 

 

  
Overloading an operator does not change its basic meaning. For example assume the + 

operator can be overloaded to subtract two objects. But the code becomes unreachable. 

class integer  

{ 

intx, y; 

public: 

int  operator + ( ) ; 

} 

int integer:  : operator + ( ) 

{ 

return   (x-y) ;  

} 

Unary operators, overloaded by means of a member function, take no explicit argument and 

return no explicit values. But, those overloaded by means of a friend function take one 

reference argument (the object of the relevant class). 

Binary operators overloaded through a member function take one explicit argument and those 

which are overloaded through a friend function take two explicit arguments. 

 

Table 7.2 

Operator to 

Overload 

Arguments passed to the 

Member Function 

Arguments passed to the Friend          

Function 

Unary Operator No 1 

Binary Operator                1 2 

 

 

  

 



 

 

LECTURE-24 

 

Type Conversions 

In a mixed expression constants and variables are of different data types. The assignment operations 

causes automatic type conversion between the operand as per certain rules. 

 

The type of data to the right of an assignment operator is automatically converted to the data type of 

variable on the left. 

 

Consider the following example: 

int x; 

float  y = 20.123; 

x=y ;                     

 

This converts float variable y to an integer before its value assigned to x. The type conversion is 

automatic as far as data types involved are built in types. We can also use the assignment operator in 

case of objects to copy values of all data members of right hand object to the object on left hand. The 

objects in this case are of same data type. But of objects are of different data types we must apply 

conversion rules for assignment. 

 

There are three types of situations that arise where data conversion are between incompatible types. 

1. Conversion from built in type to class type. 

2. Conversion from class type to built in type. 

3. Conversion from one class type to another. 

 

Basic to Class Type 
 

A constructor was used to build a matrix object from an int type array. Similarly, we used another 

constructor to build a string type object from a char* type variable. In these examples constructors 

performed a defacto type conversion from the argument's type to the constructor's class type 

 

Consider the following constructor: 

 

string :: string (char*a) 

{ 

length = strlen (a);  

name=new char[len+1];  

strcpy (name,a); 

} 

 

This constructor builds a string type object from a char* type variable a. The variables length and 

name are data members of the class string. Once you define the 

constructor in the class string, it can be used for conversion from char* type to string type. 

 

Example 

string si   , s2; 

char* namel =  “Good Morning”;  

char* name2 =  “ STUDENTS” ;  

s1 = string(namel);  

s2 = name2;  

 



 

 

The program statement 

 

si = string (namel); 

 

first converts name 1 from char* type to string type and then assigns the string type values to the 

object s1. The statement 

 

s2  = name2; 

 

performs the same job by invoking the constructor implicitly.  

Consider the following example 

class  time 

{ 

int hours;  

int minutes; 

public:  

time (int t) // constructor 

{ 

hours = t  /  60;   //t  is  inputted  in minutes 

minutes  =   t   %  60; 

} 

  }; 

 

In the following conversion statements : 

 

time Tl;  //object  Tl  created 

int period =  160; 

Tl  =  period;  //int   to  class   type 

The object Tl is created. The variable period of data type integer is converted into class type time by 

invoking the constructor. After this conversion, the data member hours ofTl will have value 2 arid 

minutes will have a value of 40 denoting 2 hours and 40 minutes. 

 

Note that the constructors used for the type conversion take a single argument whose type is to be 

converted. 

 

In both the examples, the left-hand operand of = operator is always a class object. Hence, we can 

also accomplish this conversion using an overloaded = operator. 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE-25 

Class to Basic Type 

The constructor functions do not support conversion from a class to basic type. C++ allows us to 

define a overloaded casting operator that convert a class type data to basic type. The general form of 

an overloaded casting operator function, also referred to as a conversion function, is: 

operator typename ( ) 

{ 

//Program statmerit . 

} 

 

This function converts a class type data to typename. For example, the operator double( ) converts a 

class object to type double, in the following conversion function: 

vector::   operator double ( ) 

{ 

double  sum =  0 ;  

for(int  I  =  0;   ioize; 

sum =  sum + v[i]   * v[i  ] ;    //scalar magnitude 

return  sqrt(sum); 

 } 

 

The casting operator should satisfy the following conditions. 

 It must be a class member. 

 It must not specify a return type. 

 It must not have any arguments. Since it is a member function, it is invoked 

by the object and therefore, the values used for, Conversion inside the 

function belongs to the object that invoked the function. As a result function 

does not need an argument. 

 

In the string example discussed earlier, we can convert the object string to char* as follows: 

string::   operator char*( ) 

{ 

return (str) ; 

} 

 

One Class to Another Class Type 

We have just seen data conversion techniques from a basic to class type and a class to basic type. But 

sometimes we would like to convert one class data type to another class type. 

 

Example 

Obj1 = Obj2 ; //Obj1 and Obj2 are objects of different classes.  

Objl is an object of class one and Obj2 is an object of class two. The class two type data is converted 

to class one type data and the converted value is assigned to the Objl. Since the conversion takes 

place from class two to class one, two is known as the source and one is known as the destination 

class. 

Such conversion between objects of different classes can be carried out by either a 

constructor or a conversion function. Which form to use, depends upon where we want the type-

conversion function to be located, whether in the source class or in the destination class. 

We studied that the casting operator function  

Operator typename( ) 



 

 

Converts the class object of which it is a member to typename. The type name may be a built-in type 

or a user defined one(another class type) . In the case of conversions between objects, 

typename refers to the destination class. Therefore, when a class needs to be converted, a 

casting operator function can be used. The conversion takes place in the source class and the result is 

given to the destination class object. 

Let us consider a single-argument constructor function which serves as an instruction for 

converting the argument's type to the class type of which it is a member. The argument belongs to 

the source class and is passed to the destination class for conversion. Therefore the conversion 

constructor must be placed in the destination class. 

Table 7.3 

 

Conversion   Conversion takes place in 

    Source class   Destination class 

Basic  to  class  Not applicable   Constructor 

Class  to  Basic Casting operator  Not applicable 

Class  to   class Casting operator  Constructor 

 

When a conversion using a constructor is performed in the destination class, we must be able to 

access the data members of the object sent (by the source class) as an argument. Since data members 

of the source class are private, we must use special access functions in the source class to facilitate 

its data flow to the destination class. 

 

Consider the following example of an inventory of products in a store. One way of keeping record of 

the details of the products is to record their code number, total items in the stock and the cost of each 

item. Alternatively we could just specify the item code and the value of the item in the stock. The 

following program uses classes and shows how to convert data of one type to another. 

 

#include<iostream.h> 

#include<conio.h>  

class stock2;  

class stock1 

{ 

int code, item; 

float price; 

public: 

stockl (int a, int b, float c) 

{  

code=a; 

item=b;  

price=c; 

} 

void disp( ) 

{ 

cout<<”code”<<code <<”\n”; 

cout<<”Items”<<item <<”\n”; 

cout<<”Price per item Rs . “<<price <<”\n”; 

} 

int getcode( )  

{return code; }  

int getitem( ) 

{return item; }  

int getprice( )  

{return price;}  



 

 

operator float( ) 

{ 

return ( item*price ); 

} 

}; 

 

class stock2 

{ 

int code;  

float val; 

public: 

stock2() 

{ 

code=0; val=0; 

} 

stock2(int x, float y) 

{ 

code=x; val=y; 

} 

void disp( ) 

{ 

cout<< “code”<<code  << “\n”; 

cout<< “Total Value Rs . “ <<val  <<”\n” 

} 

stock2 (stockl p) 

{ 

code=p . getcode ( ) ; 

val=p.getitem( ) * p. getprice ( ) ; 

} 

}; 

 

void main ( ) 

{ ' 

Stockl   il(101, 10,125.0); 

Stock2   12; 

float  tot_val; 

tot_val=i1  ; 

i2=il   ; 

cout<<” Stock Details-stockl-type” <<”\n”; 

i 1 . disp ( ) ; 

cout<<” Stock value”<<”\n”; 

cout<< tot_val<<”\n”; 

cout<<”  Stock Details-stock2-type”<<   “\n”; 

i2 .disp( ) ; 

getch ( ) ; 

} 

 

You should get the following output.  

Stock Details-stock1-type  

code 101  

Items 10 



 

 

Price per item Rs. 125  

Stock value  

1250 

 

Stock Details-stock2-type  

code 10 1 

Total Value Rs. 1250 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE-26 

 

Inheritance: 

 
Reaccessability is yet another feature of OOP's. C++ strongly supports the concept of reusability. 

The C++ classes can be used again in several ways. Once a class has been written and tested, it can 

be adopted by another programmers. This is basically created by defining the new classes, reusing 

the properties of existing ones. The mechanism of deriving a new class from an old one is called 

'INHERTTENCE'. This is often referred to as IS-A' relationship because very object of the class 

being defined "is" also an object of inherited class. The old class is called 'BASE' class and the new 

one is called'DERIEVED'class. 

 

Defining Derived Classes 

A derived class is specified by defining its relationship with the base class in addition to its own 

details. The general syntax of defining a derived class is as follows: 

 

class  d_classname   :   Access  specifier baseclass name 

{ 

__ 

__  // members of derived class 

}; 

The colon indicates that the a-class name is derived from the base class name. The access specifier or 

the visibility mode is optional and, if present, may be public, private or protected. By default it is 

private. Visibility mode describes the status of derived features e.g. 

 

class xyz //base  class 

{ 

members of xyz 

}; 

class ABC : public xyz    //public derivation 

{ 

members of ABC 

}; 

class ABC : XYZ    //private derivation (by default) 

{ 

members of ABC 

 }; 

In the inheritance, some of the base class data elements and member functions are inherited into the 

derived class. We can add our own data and member functions and thus extend the functionality of 

the base class. Inheritance, when used to modify and extend the capabilities of the existing classes, 

becomes a very powerful tool for incremental program development. 

 

Single Inheritance 

When a class inherits from a single base class, it is known as single inheritance. Following program 

shows the single inheritance using public derivation. 

 

#include<iostream.h> 

#include<conio.h> 

class worker 

{  



 

 

int age; 

char name [10];  

public: 

void get ( ); 

 }; 

void worker : : get ( ) 

{ 

cout <<”yout name please”  

cin >> name; 

cout <<”your age please” ;  

cin >> age; 

} 

void worker   ::  show   (   )  

{ 

cout <<”In My name is :”<<name<<”In My age is :”<<age; 

} 

class manager :: public worker    //derived class (publicly) 

{ 

int now; 

public:  

void get ( ) ;  

void show ( ) ; 

}; 

void manager : : get ( ) 

{ 

worker : : get ( ) ;    //the calling of base class input fn. 

cout << “number of workers under you”;   

cin >> now;  

cin>>name>>age; 

}    ( if  they  were  public ) 

void manager :: show ( ) 

{ 

worker :: show ( );    //calling of base class o/p fn. 

cout <<“in  No.  of  workers  under  me  are: “ << now; 

}   

main ( ) 

{                                             

clrscr ( ) ;  

worker W1;  

manager M1; 

M1 .get ( );  

M1.show (  ) ; 

} 

If you input the following to this program:  

Your name please  

Ravinder  

Your age please  

27 

number of workers under you  

30 



 

 

 

 

Then the output will be as follows: 

My name is : Ravinder 

My age is : 27 

No. of workers under me are : 30 

The following program shows the single inheritance by private derivation. 

#include<iostream.h> 

#include<conio.h> 

class worker //Base  class declaration 

{ 

int age; 

char name [10] ; 

public: 

void get ( ) ; 

void show ( ) ; 

};  

void worker : : get ( ) 

{ 

cout << “your name please” ;  

cin >> name; 

cout << “your age please”;  

cin >>age; 

}  

void worker : show ( ) 

{ 

cout << “in my name is: “ <<name<< “in” << “my age is : “ <<age; 

} 

class manager : worker //Derived class (privately by default) 

{  

int now; 

public: 

void get ( ) ; 

void show ( ) ;  

};  

void manager : : get ( ) 

{ 

worker : : get ( ); //calling the get function of base 

cout << “number of worker under you”;   class which is 

cin >> now;   

}                       

void manager : : show ( )           

{ 

worker : : show ( ) ; 

cout << “in no. of worker under me are : “ <<now; 

}  

main   (   ) 

{ 



 

 

clrscr ( ) ;  

worker wl ; 

manager ml; 

ml.get ( ) ; 

ml.show ( ); 

} 

The following program shows the single inheritance using protected derivation 

#include<conio.h> 

#include<iostream.h> 

class worker  //Base class declaration 

{ protected:  

int age; char name [20]; 

public: 

void get ( ); 

void show ( ); 

}; 

void worker :: get ( ) 

{  

cout >> “your name please”; 

cin >> name;  

cout << “your age please”; 

cin >> age; 

} 

void worker :: show ( ) 

 { 

cout << “in my name is: “ << name << “in my age is “ <<age; 

 } 

class manager:: protected worker   // protected inheritance 

 { 

int now;  

public:  

void get ( );  

void show ( ) ; 

}; 

void manager : : get ( ) 

{ 

cout << “please enter the name In”; 

cin >> name; 

cout<< “please enter the age In”; //Directly inputting the data 

cin >> age; members of base class 

cout << “ please enter the no. of workers under you:”; 

cin >> now; 

} 

void manager : : show ( ) 

 

{  

cout « "your name is : "«name«" and age is : "«age; 

cout «"In no. of workers under your are : "«now; 

main ( )  

{ 

clrscr ( ) ;  

manager ml;  

ml.get ( ) ;  



 

 

cout « "\n \n";  

ml.show ( ); 

 } 

 

Making a Private Member Inheritable 

Basically we have visibility modes to specify that in which mode you are deriving the another class 

from the already existing base class. They are: 

 

a. Private: when a base class is privately inherited by a derived class, 'public 

members' of the base class become private members of the derived class and 

therefore the public members of the base class can be accessed by its own 

objects using the dot operator. The result is that we have no member of base 

class that is accessible to the objects of the derived class. 

b. Public: On the other hand, when the base class is publicly inherited, 'public 

members' of the base class become 'public members' of derived class and 

therefore they are accessible to the objects of the derived class. 

c. Protected: C++ provides a third visibility modifier, protected, which serve a 

little purpose in the inheritance. A member declared as protected is accessible 

by the member functions within its class and any class immediately derived 

from it. It cannot be accessed by functions outside these two classes. 

 

The below mentioned table summarizes how the visibility of members undergo modifications when 

they are inherited 

 

    Base Class Visibility     Derived Class Visibility 

             Public Private   Protected 

    Private                 X  X   X 

    Public                 Public Private   Protected 

    Protected     Protected Private   Protected 

 

 

The private and protected members of a class can be accessed by: 

a. A function i.e. friend of a class. 

b. A member function of a class that is the friend of the class. 

c.          A member function of a derived class. 

Student Activity 

     1. Define Inheritance. What is the inheritance mechanism in C++? 

     2. What are the advantage of Inheritance? 

     3. What should be the structure of a class when it has to be a base for other classes? 

 

 

 

 

 

 



 

 

 

LECTURE-27 

 

 

Multilevel Inheritance 

When the inheritance is such that, the class A serves as a base class for a derived class B which in 

turn serves as a base class for the derived class C. This type of inheritance is called ‘MULTILEVEL 

INHERITENCE’. The class B is known as the ‘INTERMEDIATE BASE CLASS’ since it provides a 

link for the inheritance between A and C. The chain ABC is called ‘ITNHERITENCE*PATH’ for 

e.g. 

 

 

A   Base class 

  

 

 

 

Inheritance path   B   Intermediate base 

          class 

 

 

 

C   Derived class 

 

The declaration for the same would be: 

Class A 

{ 

//body 

} 

Class B : public A 

{ 

//body 

} 

Class C : public B 

{ 

//body 

 } 

 

This declaration will form the different levels of inheritance.  

 

Following program exhibits the multilevel inheritance. 

 

#include<iostream.h> 

#include<conio.h> 

class worker       // Base class declaration 

{ 

int age; 

char name [20] ; 

public; 

void get( ) ; 



 

 

  void show( ) ; 

 } 

 

 

 

void worker: get ( ) 

{ 

cout << “your name please” ; 

cin >> name; 

cout << “your age please” ; 

} 

void worker : : show ( )  

{ 

cout << “In my name is : “ <<name<<  “ In my age is : “ <<age; 

} 

class manager : public worker //Intermediate base class derived 

{  //publicly from the base class 

int now; 

public: 

void get ( ) ; 

void show( ) ; 

}; 

void manager :: get ( ) 

{ 

worker : :get () ;        //calling get ( ) fn. of base class  

cout << “no. of workers under you:”;  

cin >> now; 

} 

void manager : : show ( ) 

{ 

worker : : show ( ) ;      //calling show ( ) fn. of base class  

cout << “In no. of workers under me are: “<< now; 

} 

class ceo: public manager     //declaration of derived class 

{  //publicly inherited from the 

int nom; //intermediate base class 

public: 

void get ( ) ; 

void show ( ) ; 

}; 

void ceo : : get ( ) 

{ 

manager : : get ( ) ; 

cout << “no. of managers under you are:”; cin >> nom; 

}  

void manager : : show ( )  

{ 

cout << “In the no. of managers under me are: In”; 

cout << “nom; 

} 



 

 

 

 

 

main ( ) 

{ 

clrscr   (   ) ;  

ceo cl ; 

cl.get   (   ) ;   cout  << “\n\n”;  

cl.show   (   ) ; 

} 

Worker 

 

Private: 

int age; 

char name[20]; 

  

Protected: 

  

Private: 

int age; 

char name[20]; 

  

      

     Manager:Worker

 

Private: 

int now; 

  

Protected: 

  

Public: 

void get()  

void show() 

worker ::get()  

worker ::get() 

  

       

       Ceo: Manager 

  

Public: 

  

Protected: 

  

Public: 

All the inherited  

members 

  

 

 

 

 

 

 



 

 

 

 

Multiple Inheritances 

A class can inherit the attributes of two or more classes. This mechanism is known as ‘MULTIPLE 

INHERITENCE’. Multiple inheritance allows us to combine the features 

 

of several existing classes as a starring point for defining new classes. It is like the child inheriting 

the physical feature of one parent and the intelligence of another. The syntax of the derived class is 

as follows: 

  

Class base1    Class base2 

{     { 

//body1    // body2 

}     } 

 

 

 

 

       Class derived : visibility basel, visibility base2 

       { 

//body3 

        } 

 

Where the visibility refers to the access specifiers i.e. public, private or protected. Following 

program shows the multiple inheritance. 

 

#include<iostream.h> 

#include<conio . h> 

class father        //Declaration of base classl 

{ 

int age ; 

char flame   [20] ; 

public: 

void get ( ) ; 

void show ( ) ; 

};  

void father : : get ( ) 

{ 

cout << “your father name please”; 

cin >> name; 

cout << “Enter the age”; 

cin >> age; 

}  

void father : : show ( ) 

{ 

cout<< “In  my  father’s  name  is: ‘ <<name<< “In  my  father’s  age is:<<age; 

} 

class mother   //Declaration of base class 2 

{ 

char name [20] ;  

int age ; 



 

 

 

 

 

 

 

public: 

void get ( ) 

{ 

cout << “mother’s name please” << “In”;  

cin >> name; 

cout << “mother’s age please” << “in”;  

cin >> age; 

} 

void show   (   ) 

{  

cout << “In my mother’s name is: “ <<name; 

cout << “In my mother’s age is: “ <<age; 

} 

class daughter : public father, public mother //derived class inheriting 

{   //publicly 

char name [20] ;    //the features of both the base class 

int std; 

public: 

void get ( ) ; 

void show ( ) ; 

}; 

void daughter :: get ( ) 

{ 

father :: get ( ) ;  

mother :: get ( ) ; 

cout << “child's name: “; 

cin >> name; 

cout << “child's standard”; 

cin >> std;  

} 

void daughter :: show ( ) 

{ 

father :: show ( ); 

nfather :: show ( ) ; 

cout << “In child’s name is : “ <<name; 

cout << “In child's standard: “ << std; 

} 

main ( ) 

{ 

clrscr ( ) ; 

daughter d1; 

d1.get ( ) ; 

d1.show ( ) ; 

} 

 

 

 

 



 

 

 

 

 

 

Diagrammatic Representation of Multiple Inheritance is as follows: 

  

    Father     Mother 

 

Private:    Private: 

   int age;     int age; 

   char name[20];   char name[20]; 

 

Protected:    Protected: 

 

Public:     Public: 

   void get()    void get()  

   void show()    void show()

  

  

 

 

 

Class daughter: public Father, public Mother   

 

Private: char name[20]; int age; 

 

Protected: 

 

Public:  

//self 

void get(); void showQ;  

//from Father 

void get(); void show();  

//from Mother 

void get(); void show(); 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

LECTURE-28 

 

Hierarchical Inheritance 

Another interesting application of inheritance is to use is as a support to a hierarchical design of a 

class program. Many programming problems can be cast into a hierarchy where certain features of 

one level are shared by many others below that level for e.g. 

  

      Accounts 

 

Saving Accounts   Current Accounts 

 

          

        Fixed deposit 

 

     Short term          Long term 

 

     

            Mid term 

 

In general the syntax is given as 

 

Class A 

{ 

              // body A 

} 

 

 

Class B: public A    Class C: public A 

{      { 

   //body B      //body B 

}      }

In C++, such problems can be easily converted into hierarchies. The base class will include all the 

features that are common to the subclasses. A sub-class can be constructed by inheriting the features 

of base class and so on. 

 

// Program  to  show  the  hierarchical   inheritance 

#include<iostream.h> 

# include<conio. h> 

class  father  //Base  class declaration 

{ 

int age; 

char name [15]; 

public: 

void get ( ) 

{ 

cout<< “father name please”; cin >> name;  



 

 

cout<< “father’s age please”; cin >> age; 

} 

void show ( ) 

{ 

cout << “In father’s name is ‘: “<<name;  

cout << “In father’s age is: “<< age; 

} 

}; 

class son : public father //derived class 1 

{ 

char name [20] ; 

int age ; 

public; 

void get ( ) ; 

void show ( ) ; 

} ; 

void son : : get ( ) 

 

 

 

 

{ 

father   ::   get   (   ) ; 

cout << “your (son) name please” << “in”; cin >>name; 

cout << “your age please” << “ln”; cin>>age; 

} 

void son :: show ( ) 

{ 

father : : show ( ) ; 

cout << “In my name is : “ <<name; 

cout << “In my age is : “ <<age; 

} 

class daughter : public father  //derived class 2. 

{ 

char name [15] ;  

int age; 

public:       

void get ( ) 

{ 

father : : get ( ) ; 

cout << “your (daughter’s) name please In” cin>>name;  

cout << “your age please In”; cin >>age; 

} 

void show ( )  

{ 

father : : show ( ) ; 

cout << “in my father name is: “ << name << “ 

In and his age is : “<<age; 

} 

}; 

main ( ) 

{ 

clrscr ( ) ;  



 

 

son S1;  

daughter D1 ; 

S1. get ( ) ;  

D1. get ( ) ;  

S1 .show( ) ;  

D1. show ( ) ; 

} 

Hybrid Inheritance 

There could be situations where we need to apply two or more types of inheritance to design a 

program. Basically Hybrid Inheritance is the combination of one or more types of the inheritance. 

Here is one implementation of hybrid inheritance. 

 

 

//Program to show the simple hybrid inheritance 

#include<i sos t ream. h> 

#include<conio . h> 

class student          //base class declaration 

{ 

protected: 

int r_no;  

public: 

void get _n (int a)  

{ 

r_no =a;  

}  

void put_n (void) 

{ 

cout << “Roll No. : “<< r_no; 

cout << “In”; 

} 

}; 

class test : public student 

{  //Intermediate base class 

protected : int parti, par 2; 

 

   public : 

void get_m (int x, int y) {  

parti = x; part 2 = y; }  

void put_m (void) { 

cout << “marks obtained: “ << “In”  

<< “Part 1 = “ << part1 << “in”  

<< “Part 2 = “ << part2 << “In”; 

} 

}; 

class sports  // base for result 

{  

protected : int score;  

public: 

void get_s (int s) { 

score = s }  

void put_s (void) { 

cout << “ sports wt. : “ << score << “\n\n”; 



 

 

} 

}; 

class result : public test, public sports   //Derived from   test 

& sports 

{ 

int total; 

public: 

void display (void); 

}; 

 

 

void result : : display (void) 

{ 

total = part1 + part2 + score; 

put_n   (   ) ;. 

put_m   (   ); 

put_S    (   ); 

cout << “Total score: “ <<total<< “\n” 

} 

main ( ) 

{ 

clrscr ( ) ;  

result S1;  

S1.get_n (347) ;  

S1.get_m (30, 35);  

S1.get_s (7) ;  

S1.dciplay ( ) ; 

} 

 

Student Activity 
1.      What is the major use of multilevel Inheritance? 

2.      How are arguments sent to the base constructors in multiple inheritance? Whose 

responsibility is it. 

3.      What is the difference between hierarchical and hybrid Inheritance. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE-29 

Virtual Base Classes 

We have just discussed a situation which would require the use of both multiple and multi level 

inheritance. Consider a situation, where all the three kinds of inheritance, namely multi-level, 

multiple and hierarchical are involved. 

 

Let us say the 'child' has two direct base classes ‘parent1’ and ‘parent2’ which themselves has a 

common base class ‘grandparent’. The child inherits the traits of ‘grandparent’ via two separate 

paths. It can also be inherit directly as shown by the broken line. The grandparent is sometimes 

referred to as ‘INDIRECT BASE CLASS’. Now, the inheritance by the child might cause some 

problems. All the public and protected members of ‘grandparent’ are inherited into ‘child’ twice, first 

via ‘parent1’ and again via ‘parent2’. So, there occurs a duplicacy which should be avoided. 

 

The duplication of the inherited members can be avoided by making common base class as the 

virtual base class: for e.g. 

class  g_parent 

{ 

//Body 

}; 

class parent1: virtual public g_parent 

{ 

// Body 

}; 

 

class parent2: public virtual g_parent 

{ 

// Body 

};  

class child : public parent1, public parent2 

{ 

// body 

};  

 

When a class is virtual base class, C++ takes necessary care to see that only one copy 

of that class is inherited, regardless of how many inheritance paths exists between 

virtual base class and derived class. Note that keywords ‘virtual’ and ‘public’ can be  

used in either order. 

 

//Program to show the virtual base class 

#include<iostream.h> 

#include<conio . h> 

class student        // Base class declaration 

{      

protected: 

int r_no; 

public: 

void get_n (int a)  

{ r_no = a; }  

void put_n (void)  

{ cout << “Roll No. “ << r_no<< “ln”;} 

}; 



 

 

class  test :  virtual  public  student  // Virtually  declared  common 

{   //base class 1 

protected: 

int part1; 

int part2; 

public: 

void get_m (int x, int y) 

{  part1= x; part2=y;}  

void putm (void) 

{ 

cout << “marks obtained: “ << “\n”; 

cout << “part1 = “ << part1 << “\n”; 

cout << “part2 = “<< part2 << “\n”; 

} 

}; 

class  sports : public  virtual  student  // virtually  declared  common 

{       //base class 2 

protected: 

int score; 

public: 

void get_s (int a) { 

score = a ; 

} 

void put_s (void) 

{ cout << “sports wt.: “ <<score<< “\n”;} 

}; 

class result: public test, public sports      //derived class 

{ 

private : int total ;  

public: 

void show (void) ; 

}; 

void result : : show (void) 

{  total = part1 + part2 + score ; 

put_n ( ); 

put_m ( ); 

put_s ( ) ;  cout << “\n total score= “ <<total<< “\n” ; 

} 

main ( )  

{ 

clrscr ( ) ;  

result S1 ;  

S1.get_n (345)  

S1.get_m (30, 35) ; 

S1.get-S (7) ; 

S1. show ( ) ; 

} 

 

//Program  to  show  hybrid  inheritance  using  virtual  base  classes 

#include<iostream.h> 

#include<conio.h>  

Class A 

{ 



 

 

protected: 

int x;  

public:           

void get (int) ; 

void show (void) ; 

}; 

void A : : get (int a) 

{ x = a ; }  

void A : : show (void) 

{ cout << X ;}  

Class A1 : Virtual Public A 

{ 

 

 

 

 

 

protected: 

int y ;  

public: 

void get (int) ; 

void show (void); 

}; 

void A1 :: get (int a) 

{ y = a;} 

void A1 :: show (void) 

{ 

cout <<y ; 

{ 

class A2 : Virtual public A 

{ 

protected: 

int z ; 

public: 

void get (int a) 

{ z =a;} 

void show (void) 

{ cout << z;} 

}; 

class A12 : public A1, public A2 

{ 

int r, t ;  

public: 

void get (int a) 

{ r = a;} 

void show (void) 

{ t = x + y + z + r ; 

cout << “result =” << t ; 

} 

}; 

main ( ) 

{ 

clrscr   (   ) ;  



 

 

A12  r ; 

r.A  : : get (3) ; 

r.A1 : : get (4) ;  

r.A2 : : get (5) ; 

r.get (6) ;  

r . show ( ) ; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE-30 

 

Polymorphism: 

Introduction 

When an object is created from its class, the member variables and member functions are allocated 

memory spaces. The memory spaces have unique addresses. Pointer is a mechanism to access these 

memory locations using their address rather than the name assigned to them. You will study the 

implications and applications of this mechanism in detail in this chapter. 

 

Pointer is a variable which can hold the address of a memory location rather than the value at the 

location. Consider the following statement 

 

int num =84; 

 

This statement instructs the compiler to reserve a 2-byte of memory location and puts the value 84 in 

that location. Assume that the compiler allocates memory location 1001 to num. Diagrammatically, 

the allocation can be shown as: 

 

 

num   Variable name 

 

84   Value 

  

1001   Address of memory location 

 

Figure 9.1 

  

As the memory addresses are themselves numbers, they can be assigned to some other variable For 

example, ptr be the variable to hold the address of variable num. 

 

Thus, we can access the value of num by the variable ptr. We can say “ptr points to num” as shown 

in the figure below. 

 

num    num 

  

  84    1001 

 

  1001    2057 

Fig 9.2 

 



 

 

      

Pointers to Objects 

An object of a class behaves identically as any other variable. Just as pointers can be defined in case 

of base C++ variables so also pointers can be defined for an object type. To create a pointer variable 

for the following class 

class employee   {  

  int code;  

  char name   [20] ;  

public: 

  inline void getdata ( )= 0 ;  

  inline void display ( )= 0 ;  

}; 

The following codes is written  

employee  *abc; 

This declaration creates a pointer variable abc that can point to any object of employee type. 

 

this Pointer 

C++ uses a unique keyword called "this" to represent an object that invokes a member function. 'this' 

is a pointer that points to the object for which this function was called. This unique pointer is called 

and it passes to the member function automatically. The pointer this acts as an implicit argument to 

all the member function, for e.g. 

class ABC 

{ 

   int a ; 

  ----- 

  ----- 

  }; 

The private variable ‘a’ can be used directly inside a member function, like 

a=123;  

We can also use the following statement to do the same job. 

this → a = 123  

e.g. 

class  stud 

{ 

int a; 

public: 

void set   (int a) 

{ 

this  →  a  =  a;   //here   this  point   is  used  to assign a  class   level 

} ‘a’   with the argument   ‘a’ 

void show   (   ) 

{                     

cout  <<  a; 

} 

}; 

main   (   ) 

{ 

stud S1, S2; 



 

 

S1.bet   (5) ;  

S2.show   (   ); 

} 

o/p =  5 

 

Pointers to Derived Classes 

Polymorphism is also accomplished using pointers in C++. It allows a pointer in a base class to point 

to either a base class object or to any derived class object. We can have the following Program 

segment show how we can assign a pointer to point to the object of the derived class. 

 

class base 

{ 

//Data Members  

//Member Functions 

}; 

class derived : public base 

{ 

//Data Members  

//Member functions 

}; 

 

void main   (   ) { 

base *ptr;   //pointer to class base 

derived obj ; 

ptr =  &obj ;      //indirect  reference obj   to the pointer 

//Other Program statements 

 

} 

The pointer ptr points to an object of the derived class obj. But, a pointer to a derived class object 

may not point to a base class object without explicit casting. 

 

For example, the following assignment statements are not valid 

void main   (   ) 

{ 

base  obja; 

derived *ptr; 

ptr =  &obja; //invalid.... .explicit  casting required 

//Other Program statements 

} 

A derived class pointer cannot point to base class objects. But, it is possible by using explicit casting. 

void main   (   ) 

{ 

base obj ; 

derived *ptr;            // pointer of  the derived class 

ptr =   (derived *)   & obj;              //correct  reference 

//Other Program statements 

  } 

 

       Student Activity 

1. Define Pointers. 

2. What are the various operators of pointer? Describe their usage. 

3. How will you declare a pointer in C++? 

 



 

 

LECTURE-31 

 

Virtual Functions 

Virtual functions, one of advanced features of OOP is one that does not really exist but it« appears 

real in some parts of a program. This section deals with the polymorphic features which are 

incorporated using the virtual functions. 

 

The general syntax of the virtual function declaration is: 

class use_detined_name{ 

private: 

public: 

virtual return_type function_name1 (arguments);  

virtual return_type function_name2(arguments); 

virtual return_type function_name3( arguments); 

 ------------------ 

}; 

To make a member function virtual, the keyword virtual is used in the methods while it is declared in 

the class definition but not in the member function definition. The keyword virtual precedes the 

return type of the function name. The compiler gets information from the keyword virtual that it is a 

virtual function and not a conventional function declaration. 

 

For. example, the following declararion of the virtual function is valid. 

class point {        

intx; 

inty; 

public: 

virtual int length ( ); 

virtual void display ( ); 

}; 

Remember that the keyword virtual should not be repeated in the definition if the definition occurs 

outside the class declaration. The use of a function specifier virtual in the function definition is 

invalid. 

 

For example 

class point   { 

intx ;  

inty ; 

public: 

virtual void display   ( ); 

};  

virtual void point: : display ( ) //error 

{ 

Function Body 

} 

A virtual function cannot be a static member since a virtual member is always a member of a 

particular object in a class rather than a member of the class as a whole. 

class point   { 

int x ;  

int y ; 

public: 

virtual  static  int  length   ( );   //error 



 

 

}; 

int point: : length ( ) 

{ 

Function body 

} 

A virtual function cannot have a constructor member function but it can have the destructor member 

function. 

class point {  

int x ; 

int y ; 

public: 

virtual point (int xx, int yy) ; // constructors, error 

void display ( ) ; 

int length ( ) ; 

}; 

A destructor member function does not take any argument and no return type can be specified for it 

not even void. 

class point   { 

int x ; 

int y ;  

public: 

virtual  point   (int xx,   int yy) ;   //invalid 

void display   (   ) ; 

int  length   (   ) ; 

It is an error to redefine a virtual method with a change of return data type in the derived class with 

the same parameter types as those of a virtuall method in the base class. 

class base { 

int x,y ; 

public: 

virtual int sum (int xx, int yy ) ; //error 

} ; 

class derived: public base { 

intz ; 

public: 

virtual float sum (int xx, int yy) ; 

}; 

The above declarations of two virtual functions are invalid. Even though these functions take 

identical arguments note that the return data types are different. 

virtual  int  sum   (int xx,   int  IT) ;   //base  class  

virtual  float  sum   (int xx,   int  IT) ;   //derived class 

Both the above functions can be written with int data types in the base class as well as in the derived 

class as 

virtual  int  sum   (int xx,   int yy) ;   //base class  

virtual  int  sum   (int xx,   int yy) ;   //derived class 

Only a member function of a class can be declared as virtual. A non member function (nonmethod) 

of a class cannot be declared virtual. 

virtual void display   ( )   //error,   nonmember function 

{ 

Function body 

} 

 

 

 



 

 

Student Activity 
1. What are virtual functions 

2. What are pure virtual functions 

3. Define Virtual destructors. 

 

Late Binding 
As we studied in the earlier unit, late binding means selecting functions during the execution. 

Though late binding requires some overhead it provides increased power and flexibility. The late 

binding is implemented through virtual functions as a result we have to declare an object of a class 

either as a pointer to a class or a reference to a class. 

 

For example the following shows how a late binding or run time binding can be carried out with the 

help of a virtual function. 

class base {  

private :  

int x; 

float y;  

public: 

virtual void display ( ) ; 

int sum ( ) ; 

}; 

class derivedD : public baseA 

{  

private : 

int x ;  

float y; 

public: 

void display ( ); //virtual 

int sum ( ) ; 

}; 

void main ( ) 

{ 

baseA *ptr ; 

derivedD objd ; 

ptr = &objd ; 

Other Program statements 

ptr- >di splay   ( ) ;   //run time binding 

ptr->sum   (   ) ;   //compile  time binding  

} 

 

Note that the keyword virtual is be followed by the return type of a member function if a run time is 

to be bound. Otherwise, the compile time binding will be effected as usual. In the above program 

segment, only the display ( ) function has been declared as virtual in the base class, whereas the sum 

( ) is nonvirtual. Even though the message is given from the pointer of the base class to the objects of 

the derived class, it will not  

 

access the sum ( ) function of the derived class as it has been declared as nonvirtual. The sum ( ) 

function compiles only the static binding. 

 

 The following program demonstrates the run time binding of the member functions of a class. The 

same message is given to access the derived class member functions from the array of pointers. As 

function are declared as virtual, the C++ compiler invokes the dynamic binding. 

 



 

 

#include <iostream.h> 

#include <conio.h> 

class baseA { 

public : 

virtual void display () { 

cout<< “One \n”; 

} 

}; 

class derivedB : public baseA 

{ 

public: 

virtual void display(){ 

cout<< “Two\n”; } 

}; 

class derivedC: public derivedB 

{ 

public: 

virtual void display ( ) { 

cout<< “Three \n”; } 

}; 

void main ( ) { 

//define three objects 

baseA obja; 

derivedB objb; 

derivedC objc;  

base A *ptr   [3];   //define  an array of pointers  to baseA 

ptr   [0]   =   &obja; 

ptr   [1]   =  &objb; 

ptr   [2]   =  &objc; 

for   ( int  i  =  0;   i  <=2;   i  ++   ) 

ptr   [i]->display   ( );   //same  message  for  all   objects 

getche   (   ) ; 

} 

Output  

One  

Two  

Three 

 

The program listed below illustrates the static binding of the member functions of a class. In program 

there are two classes student and academic. The class academic is derived from class student. The 

two member function getdata and display are defined for both the classes. *obj is defined for class 

student, the address of which is stored in the object of the class academic. The functions getdata ( ) 

and display ( ) of student class are invoked by the pointer to the class. 

 

#include<iostream.h>  

#include<conio.h>  

class student {  

private:  

int rollno;  

char name [20];  

public: 

void getdata ( );  

void display ( ); 



 

 

}; 

class academic: public student { 

private: 

char stream; 

public: 

void getdata ( ); 

void display ( ) ; 

}; 

void student:: getdata ( )  

{ 

cout<< “enterrollno\n”; 

cin>>rollno; 

cout<< “enter   name \n”; 

cin>>name;  

} 

void student:: display ( ) 

{  

cout<< “the student’s roll number is “<<rollno<< “and name is”<<name ; 

cout<< endl; 

} 

void academic :: getdata ( ) 

{ 

cout<< “enter stream of a student? \n”;  

cin >>stream; 

} 

void academic :: display ( ) { 

cout<< “students stream \n”; 

cout <<stream<< endl; 

} 

void main ( ) 

{ 

student  *ptr ;  

academic obj ;  

ptr=&obj;  

ptr->getdata ( ) ; 

ptr->display ( ) ; 

getche   (   ); 

}  

output 

enter rollno 

25 

enter name 

raghu 

the  student’s  roll number is  25  and name  is  raghu 

 

The program listed below illustrates the dynamic binding of member functions of a class. In this 

program there are two classes student and academic. The class academic is derived from student. 

Student function has two virtual functions getdata ( ) and display (). The pointer for student class is 

defined and object . for academic class is created. The pointer is assigned the address of the object 

and function of derived class are invoked by pointer to student. 

#include <iostream.h> 

#include <conio.h> 

class student { 



 

 

private: 

introllno; 

char name [20]; 

public: 

virtual void getdata ( ); 

virtual void display ( ); 

}; 

class academic: public student { 

private : 

char stream[10]; 

public: 

void getdata { }; 

void display ( ) ; 

}; 

void student: : getdata ( ) 

{ 

cout<< “enter rollno\n”;  

cin >> rollno;  

cout<< “enter name \n”;  

cin >>name; 

} 

void student:: display ( ) 

 { 

cout<< “the student’s roll number is”<<rollno<< “and name is”<<name;  

cout<< end1; 

} 

void academic: : getdata ( ) 

{ 

cout << “enter stream of a student? \n”;  

cin>> stream; 

} 

void academic:: display ( ) 

{ 

cout<< “students stream \n”;  

cout<< stream << endl; 

} 

void main ( ) 

{  

student  *ptr ; 

academic  obj ; 

ptr =  &obj ; 

ptr->getdata ( ); 

ptr->dlsplay ( ); 

getch ( ); 

} 

output 

enter stream of a student? 

Btech 

students stream 

Btech 

 

 



 

 

LECTURE-32 

 

Pure Virtual Functions 

Generally a function is declared virtual inside a base class and we redefine it the derived classes. The 

function declared in the base class seldom performs any task. 

 

The following program demonstrates how a pure virtual function is defined, declared and invoked 

from the object of a derived class through the pointer of the base class. In the example there are two 

classes employee and grade. The class employee is base class and the grade is derived class. The 

functions getdata ( ) and display ( ) are declared for both the classes. For the class employee the 

functions are defined with empty body or no code inside the function. The code is written for the 

grade class. The methods of the derived class are invoked by the pointer to the base class. 

 

#include<iostream.h> 

#include<conio.h> 

class employee { 

int code  

char name [20] ;  

public: 

virtual void getdata ( ) ; 

virtual void display ( ) ; 

}; 

class grade: public employee 

{ 

char grd [90] ; 

float salary ;  

public : 

void getdata ( ) ; 

void display ( ); 

}; 

void employee :: getdata ( ) 

{ 

} 

void employee:: display ( ) 

{ 

 } 

void grade : : getdata ( ) 

 { 

cout<< “ enter employee’s grade “;  

cin> > grd ; 

cout<< “\n enter the salary “ ;  

cin>> salary; 

} 

void grade : : display ( ) 

{ 

cout«" Grade salary \n";  

cout« grd« " "« salary« endl; 



 

 

} 

void main ( ) 

{ 

employee *ptr ; 

grade obj ;  

ptr = &obj ;  

ptr->getdata ( ) ;  

ptr->display ( ) ;  

getche ( ) ; 
} 

Output 

enter employee’s grade A 

enter the salary 250000 

Grade  salary 

A         250000 

 

 

Object Slicing: 

In C++, a derived class object can be assigned to a base class object, but the other way is not 

possible.  

class Base { int x, y; }; 

  
class Derived : public Base { int z, w; }; 

  
int main()  
{ 
    Derived d; 
    Base b = d; // Object Slicing,  z and w of d are sliced off 
} 

Object Slicing happens when a derived class object is assigned to a base class object, additional 

attributes of a derived class object are sliced off to form the base class object. 

#include <iostream> 
using namespace std; 

  
class Base 
{ 
protected: 
    int i; 
public: 
    Base(int a)     { i = a; } 
    virtual void display() 
    { cout << "I am Base class object, i = " << i << endl; } 
}; 

  
class Derived : public Base 
{ 
    int j; 
public: 
    Derived(int a, int b) : Base(a) { j = b; } 
    virtual void display() 
    { cout << "I am Derived class object, i = " 
           << i << ", j = " << j << endl;  } 
}; 

  



 

 

// Global method, Base class object is passed by value 
void somefunc (Base obj) 
{ 
    obj.display(); 
} 

  
int main() 
{ 
    Base b(33); 
    Derived d(45, 54); 
    somefunc(b); 
    somefunc(d);  // Object Slicing, the member j of d is sliced off 
    return 0; 
} 

Output:  

I am Base class object, i = 33 

I am Base class object, i = 45 

We can avoid above unexpected behavior with the use of pointers or references. Object slicing 

doesn’t occur when pointers or references to objects are passed as function arguments since a pointer 

or reference of any type takes same amount of memory. For example, if we change the global 

method myfunc() in the above program to following, object slicing doesn’t happen. 

// rest of code is similar to above 
void somefunc (Base &obj) 
{ 
    obj.display(); 
}            
// rest of code is similar to above 

Output:  

I am Base class object, i = 33 

I am Derived class object, i = 45, j = 54 

We get the same output if we use pointers and change the program to following. 

// rest of code is similar to above 
void somefunc (Base *objp) 
{ 
    objp->display(); 
} 
int main() 
{ 
    Base *bp = new Base(33) ; 
    Derived *dp = new Derived(45, 54); 
    somefunc(bp); 
    somefunc(dp);  // No Object Slicing 
    return 0; 
} 

Output:  

I am Base class object, i = 33 

I am Derived class object, i = 45, j = 54 

Object slicing can be prevented by making the base class function pure virtual there by disallowing 

object creation. It is not possible to create the object of a class which contains a pure virtual method. 



 

 

 

LECTURE-33 

C++ Function Overriding 

If base class and derived class have member functions with same name and arguments. If you create 

an object of derived class and write code to access that member function then, the member function 

in derived class is only invoked, i.e., the member function of derived class overrides the member 

function of base class. This feature in C++ programming is known as function overriding. 

 

Accessing the Overridden Function in Base Class From Derived Class 

To access the overridden function of base class from derived class, scope resolution operator ::. For 

example: If you want to access get_data() function of base class from derived class in above 

example then, the following statement is used in derived class. 

A::get_data; // Calling get_data() of class A. 

 

It is because, if the name of class is not specified, the compiler thinks get_data() function is calling 

itself. 



 

 

 

 

Abstract Class 

Abstract Class is a class which contains atleast one Pure Virtual function in it. Abstract classes are 

used to provide an Interface for its sub classes. Classes inheriting an Abstract Class must provide 

definition to the pure virtual function, otherwise they will also become abstract class. 

Characteristics of Abstract Class 

1. Abstract class cannot be instantiated, but pointers and refrences of Abstract class type can be 

created. 

2. Abstract class can have normal functions and variables along with a pure virtual function. 

3. Abstract classes are mainly used for Upcasting, so that its derived classes can use its 

interface. 

4. Classes inheriting an Abstract Class must implement all pure virtual functions, or else they 

will become Abstract too. 

Pure Virtual Functions 

Pure virtual Functions are virtual functions with no definition. They start with virtual keyword and 

ends with = 0. Here is the syntax for a pure virtual function, 

virtual void f() = 0; 

Example of Abstract Class 

class Base          //Abstract base class 



 

 

{ 

 public: 

 virtual void show() = 0;            //Pure Virtual Function 

}; 

 

class Derived:public Base 

{ 

 public: 

 void show() 

 { cout << "Implementation of Virtual Function in Derived class"; } 

}; 

 

int main() 

{ 

 Base obj;       //Compile Time Error 

 Base *b; 

 Derived d; 

 b = &d; 

 b->show(); 

} 

Output : Implementation of Virtual Function in Derived class 

In the above example Base class is abstract, with pure virtual show() function, hence we cannot 

create object of base class. 

 

Why can't we create Object of Abstract Class ? 

When we create a pure virtual function in Abstract class, we reserve a slot for a function in the 

VTABLE(studied in last topic), but doesn't put any address in that slot. Hence the VTABLE will be 

incomplete. 

As the VTABLE for Abstract class is incomplete, hence the compiler will not let the creation of 

object for such class and will display an errror message whenever you try to do so. 

 

 

 

 

 

 

 

 



 

 

LECTURE-34 

 

 

 

Exception Handling: 

 

Exception refers to unexpected condition in a program. The unusual conditions could be faults, 

causing an error which in turn causes the program to fail. The error handling  mechanism of c++ is 

generally referred to as exception handling. 

 

Generally , exceptions are classified into synchronous and asynchronous exceptions.. The exceptions 

which occur during the program execution, due to some fault in the input data or technique that is not 

suitable to handle the current class of data. with in a program is known as synchronous exception. 

Example: 

errors such as out of range,overflow,underflow and so on. 

 

The exceptions caused by events or faults unrelated to the program and beyond the control of 

program are asynchronous exceptions.  

For example, errors such as keyboard interrupts, hardware malfunctions, disk failure and so on. 

 

exception handling model: 

 

When a program encounters an abnormal situation for which it in not designed, the user may transfer 

control to some other part of the program that is designed to deal with the problem. This is done by 

throwing an exception. The exception handling mechanism uses three blocks: try, throw and catch. 

The try block must be followed immediately by a handler, which is a catch block. If an exception is 

thrown in the try block the program control is transferred to the appropriate exception handler. The 

program should attempt to catch any exception that is thrown by any function. The relationship of 

these three exceptions handling constructs called the exception handling model is shown in figure: 

 

 

 

 

 
 

 

exception 

invoke function having throw block 

try block 

perform operation which may throw 

or invoke external function if needed 

throw block 
if (failure) 

throw object 

catch block 
catches all exceptions thrown from 

within try block 



 

 

throw construct: 

 

The keyword throw is used to raise an exception when an error is generated in the comutation. the 

throw expression initialize a temporary object of the typeT used in thorw (T arg). 

syntax: 

throw T; 

 

catch construct: 

 

The exception handler is indicated by the catch keyword. It must be used immediately after the 

statements marked by the try keyword. The catch handler can also occur immediately after another 

catch Each handler will only evaluate an exception that matches. 

syn: 

catch(T) 

{ 

// error meassges 

} 

 

try construct: 

The try keyboard defines a boundary within which an exception can occur. A block of code in which 

an exception can occur must be prefixed by the keyword try. Following the try keyword is a block of 

code enclosed by braces. This indicates that the prepared to test for the existence of exceptions. If an 

exception occurs, the program flow is interrupted. 

 

try 

{ 

 … 

if (failure) 

throw T; 

} 

catch(T) 

{ 

… 

} 

example: 

#include<iostream.h> 

void main() 

{ 

int a,b; 

cout<<”enter  two numbers:”; 

cin>>a>>b; 

try 

{ 

if (b= =0)  

 throw b; 

else 

cout<a/b; 

} 

catch(int x) 

{ 

cout<<”2nd operand can’t be 0”; 

} 

} 



 

 

LECTURE-35 

 

 

Array reference out of bound: 

#define max 5 

class array 

{ 

private: 

 int a[max]; 

public: 

 int &operator[](int i) 

 { 

 if (i<0 || i>=max) 

  throw i; 

 

 else 

  return a[i]; 

} 

}; 

void main() 

{ 

array x; 

try 

{ 

cout<<”trying to refer a[1]…” 

x[1]=3; 

cout<<”trying to refer a[13]…” 

x[13]=5; 

} 

catch(int i) 

{ 

cout<<”out of range in array references…”; 

} 

} 

 

multiple catches in a program 

void test(int x) 

{ 

try{ 

if (x==1) 

 throw x; 

else if (x==-1) 

 throw 3.4; 

else if (x==0) 

 throw ‘s’; 

} 

catch (int i) 

{ 

cout<<”caught an integer…”; 

} 

catch (float s) 

{ 

cout<<”caught a float…”; 



 

 

} 

catch (char c) 

{ 

cout<<”caught a character…”; 

}} 

void main() 

{ 

test(1); 

test(-1); 

test(0); 

} 

 

catch all 

void test(int x) 

{ 

try{ 

if (x==1) 

 throw x; 

else if (x==-1) 

 throw 3.4; 

else if (x==0) 

 throw ‘s’; 

} 

catch (…) 

{ 

cout<<”caught an error…”; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Module-03: 

LECTURE-36 

 

Containership in C++ 

                When a class contains objects of another class or its members, this kind of relationship is 

called containership or nesting and the class which contains objects of another class as its members is 

called as container class. 

Syntax for the declaration of another class is: 

  

Class class_name1 

{ 

——– 

——– 

}; 

Class class_name2 

{ 

——– 

——— 

}; 

Class class_name3 

{ 

Class_name1 obj1;                   // object of class_name1 

Class_name2 obj2;                 // object of class_name2 

———- 

———– 

}; 

 

 

 

 

 



 

 

//Sample Program to demonstrate Containership 

#include < iostream.h > 

#include < conio.h > 

#include < iomanip.h > 

#include< stdio.h > 

const int len=80; 

class employee 

{ 

private: 

char name[len]; 

int number; 

public: 

void get_data() 

{ 

cout << "\n Enter employee name: "; 

cin >> name; 

cout << "\n Enter employee number: "; 

cin >> number; 

} 

void put_data() 

{ 

cout << " \n\n Employee name: " << name; 

cout << " \n\n Employee number: " << number; 

} 

}; 

class manager 

{ 

private: 

char dept[len]; 

int numemp; 

employee emp; 

public: 

void get_data() 

{ 

emp.get_data(); 

cout << " \n Enter department: "; 

cin >> dept; 

cout << "\n Enter number of employees: "; 

cin >> numemp; 

} 

void put_data() 

{ 

emp.put_data(); 

cout << " \n\n Department: " << dept; 

cout << " \n\n Number of employees: " << numemp; 

} 

}; 

class scientist 

{ 

private: 

int pubs,year; 

employee emp; 

public: 



 

 

void get_data() 

{ 

emp.get_data(); 

cout << " \n Number of publications: "; 

cin >> pubs; 

cout << " \n Year of publication: "; 

cin >> year; 

} 

void put_data() 

{ 

emp.put_data(); 

cout << "\n\n Number of publications: " << pubs; 

cout << "\n\n Year of publication: "<< year; 

} 

}; 

void main() 

{ 

manager m1; 

scientist s1; 

int ch; 

clrscr(); 

do 

{ 

cout << "\n 1.manager\n 2.scientist\n"; 

cout << "\n   Enter your choice: "; 

cin >> ch; 

switch(ch) 

{ 

case 1: 

       cout << "\n Manager data:\n"; 

       m1.get_data(); 

       cout << "\n Manager data:\n"; 

       m1.put_data(); 

       break; 

case 2:cout << " \n Scientist data:\n"; 

       s1.get_data(); 

       cout << " \n Scientist data:\n"; 

       s1.put_data(); 

       break; 

} 

cout << "\n\n To continue Press 1 -> "; 

cin >> ch; 

} 

while(ch==1); 

getch(); 

} 

 

 

 

 

 

 

 



 

 

Difference between Inheritance and Containership : 

 

Containership:  Containership is the phenomenon of using one or more classes within the definition 

of other class.  When a class contains the definition of some other classes, it is referred to as 

composition, containment or aggregation.  The data member of a new class is an object of some 

other class.  Thus the other class is said to be composed of other classes and hence referred to as 

containership.  Composition is often referred to as a “has-a” relationship because the objects of the 

composite class have objects of the composed class as members. 

 

 

Inheritance:  Inheritance is the phenomenon of deriving a new class from an old one.  Inheritance 

supports code reusability.  Additional features can be added to a class by deriving a class from it and 

then by adding new features to it.  Class once written or tested need not be rewritten or redefined.  

Inheritance is also referred to as specialization or derivation, as one class is inherited or derived from 

the other.  It is also termed as “is-a” relationship because every object of the class being defined is 

also an object of the inherited class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE-37 

 

 

Template: 

Template supports generic programming, which allows developing reusable software components 

such as functions, classes, etc supporting different data types in a single frame work. 

A template in c++ allows the construction of a family of template functions and classes to perform 

the same operation o different data types. The templates declared for functions are called class 

templates. They perform appropriate operations depending on the data type of the parameters passed 

to them. 

 

Function Templates: 

A function template specifies how an individual function can be constructed. 

template <class T> 

return type functionnm(T arg1,T arg2) 

{ 

fn body; 

} 

 

For example: 

Input two number and swap their values 

 

template <class T> 

void swap (T &x,T & y) 

{ 

T z; 

z=x; 

x=y; 

y=z; 

} 

void main( ) 

{ 

char ch1,ch2; 

cout<<”enter two characters:”; 

cin>>ch1>>ch2; 

swap(ch1,ch2); 

cout<<ch1<<ch2; 

int a,b; 

cout<<”enter a,b:”; 

cin>>a>>b; 

swap(a,b); 

cout<<a<<b; 

float p,q; 

cout<<”enter p,q:”; 

cin>>p>>q; 

swap(p,q); 

cout<<p<<q; 

} 

 

example 2: 

find maxium between two data items. 

template <class T> 

T max(T a,T b) 



 

 

{ 

if (a>b) 

return a; 

else 

return b; 

} 

void main() 

{ 

char ch1,ch2; 

cout<<”enter two characters:”; 

cin>>ch1>>ch2; 

cout<<max(ch1,ch2); 

int a,b; 

cout<<”enter a,b:”; 

cin>>a>>b; 

cout<<max(a,b); 

float p,q; 

cout<<”enter p,q:”; 

cin>>p>>q; 

cout<<max(p,q); 

} 

 

Overloading of function template 

 

#include<iostream.h> 

template <class T> 

void print( T a) 

{ 

cout<<a; 

} 

template <class T> 

void print( T a, int n) 

{ 

int i; 

for (i=0;i<n;i++) 

cout<<a; 

} 

void main() 

{ 

print(1); 

print(3.4); 

print(455,3); 

print(“hello”,3); 

} 

 

Multiple arguments function template: 

find sum of two different numbers 

template <class T,class U> 

T  sum(T a,U b) 

{ 

 return a+(U)b; 

} 

void main( ) 



 

 

{ 

cout<<sum(4,5.5); 

cout<sum(5.4,3); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE-38 

 

 

Class Template 

similar to functions, classes can also be declared to operate on different data types. Such classes are 

class templates. a class template specifies how individual classes can be constructed similar to 

normal class definition. These classes model a generic class which support similar operations for 

different data types. 

 

syn: 

template <class T> 

class classnm 

{ 

T member1; 

T member2; 

… 

… 

public: 

T fun(); 

… 

.. 

}; 

 

objects for class template is created like: 

classnm <datatype> obj; 

obj.memberfun(); 

 

 

 

 

example: 

Input n numbers into an array and print the element is ascending order.(array sorting) 

 

template <class T> 

class array 

{ 

T *a; 

int n; 

public: 

void getdata() 

{ 

int i; 

cout<<”enter how many no:”; 

cin>>n; 

a=new T[n]; 

for (i=0;i<n;i++) 

{ 

cout<<enter a number:”; 

cin>>a[i]; 

} 

} 

void putdata() 

{ 



 

 

for (i=0;i<n;i++) 

{ 

cout<<a[i]<<endl; 

} 

} 

void sort( ) 

{ 

 T k; 

int i,j; 

for(i=0;i<n-1;i++) 

{ 

for (j=0;j<n;j++) 

{ 

  if (a[i]>a[j]) 

   { 

    k=a[i]; 

    a[i]=a[j]; 

    a[j]=k; 

   } 

 } 

} 

} 

}; 

void main() 

{ 

array <int>x; 

x.getdata(); 

x.sort(); 

x.putdata(); 

 

array <float> y; 

y.getdata(): 

y.sort(); 

y.putdata(); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LECTURE-39 

 

Virtual destructors: 

 

Just like declaring member functions as virtual, destructors can be declared as virtual, whereas 

constructors can not be virtual. Virtual Destructors are controlled in the same way as virtual 

functions. When a derived object pointed to by the base class pointer is deleted, destructor of the 

derived class as well as destructor of all its base classes are invoked. If destructor is made as non 

virtual destructor in the base class, only the base class’s destructor is invoked when the object is 

deleted. 

#icnlude<iostream.h> 

#include<string.h> 

class father 

{ 

protected: 

char *fname; 

public: 

father(char *name) 

{ 

fname=new char(strlen(name)+1); 

strcpy(fname,name); 

} 

virtual ~father() 

{ 

delete fname; 

cout<<”~father is invoked…”; 

} 

 

virtual void show() 

{ 

cout<<”father name…”<<fname; 

} 

}; 

 

class son: public father 

{ 

protected: 

char *s_name; 

public: 

son(char *fname,char *sname):father(fname) 

{ 

sname=new char[strlen(sname)+1]; 

strcpy(s_name,sname); 

} 

~son() 

{ 

delete s_name; 

cout<<”~son() is invoked”<<endl; 

} 

void show() 

{ 

cout<<”father’s name”<<fname; 

cout<<”son’s name:”<<s_name; 



 

 

} 

}; 

void main() 

{ 

father *basep; 

basep =new father (“mona”); 

cout<<”basep points to base object…” 

basep->show(); 

delete basep; 

basep=new son(“sona”,”mona”); 

cout<<”base points to derived object…”; 

basep->show(); 

delete basep; 

} 

 

 

 

 

 

Overloading of >> and << operator 

 

#define size 5 

class vector 

{ 

int v[size]; 

public: 

vector(); 

friend vector operator*(int a,vector b); 

friend vector operator *(vector b,int a); 

friend istream &operator>>(istream &,vector &); 

friend ostream &operator<<(ostream &,vector &); 

}; 

vector :: vector() 

{ 

for(int i=0;i<size;i++) 

v[i]=0; 

} 

vector::vector(int *x) 

{ 

for (int i=0;i<size;i++) 

v[i]=x[i]; 

} 

vector operator*(int a,vector b) 

{ 

vector c; 

for(int i=0;i<size;i++) 

c.v[i]=a*b.v[i]; 

return c; 

} 

 

vector operator*(vector b,int a) 

{ 

vector c; 



 

 

for(int i=0;i<size;i++) 

c.v[i]=a*b.v[i]; 

return c; 

} 

istream &operator>>(istream &din,vector &b) 

{ 

for(int i=0;i<size;i++) 

din>>b.v[i]; 

} 

ostream &operator<<(ostream &dout,vector &b) 

{ 

for(i=0;i<size;i++) 

dout<<a[i]; 

return dout; 

} 

int x[size]={2,4,6}; 

int main() 

{ 

vector m; 

vector n=x; 

cout<<”enter elements of vector m”; 

cin>>m; 

cout<<m; 

vector p,q; 

p=2*m; 

q=n*2; 

cout<<p; 

cout<<q; 

 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      



 

 

LECTURE-40 

 

Managing Console I/O 

 

Introduction 

One of the most essential features of interactive programming is its ability to interact 

with the users through operator console usually comprising keyboard and monitor. Accordingly, 

every computer language (and compiler) provides standard  

input/output functions and/or methods to facilitate console operations. 

 

C++ accomplishes input/output operations using concept of stream. A stream is a 

series of bytes whose value depends on the variable in which it is stored. This way, C++ is able to 

treat all the input and output operations in a uniform manner. Thus, whether it is reading from a file 

or from the keyboard, for a C++ program it is simply a stream. 

 

We have used the objects cin and cout (pre-defined in the iostream.h file) for the input 

and output of data of various types. This has been made possible by overloading the operators >> 

and << to recognize all the basic C++ types. The >> operator is overloaded in the istream class and « 

is overloaded in the ostream class. The 

following is the general format for reading data from the keyboard: 

 

cin >> variable1  >> variable2   >>… …>> variableN; 

 

Where variable1, variable2,.... are valid C++ variable names that have been declared already. 

This statement will cause the computer to halt the execution and look for input data from the 

keyboard. The input data for this statement would be: 

 

data1 data2......dataN 

 

The input data are separated by white spaces and should match the type of variable in the cin 

list. Spaces, newlines and tabs will be skipped. 

 

The operator >> reads the data character by character and assigns it to the indicated location. 

The reading for a variable will be terminated at the encounter of a white space or a character that 

does not match the destination type.  

For example, consider the following code: 

 

int code;  

cin >> code;  

 

Suppose the following data is given as input: 

1267E 

The operator will read the characters up to 7 and the value 1267 is assigned to code. The 

character E remains in the input stream and will be input to the next cin statement. The general 

format of outputting data: 

cout <<  iteml  <<item2  <<   ..   ..<< itemN;  

The items, item1 through itemN may be variables or constants of any basic types. 

 

 



 

 

 

 

The put() and get() Functions 
The classes istream and ostream define two member functions get() and put() respectively to 

handle the single character input/output operations. There are two types of get() functions. We can 

use both get(char*) and get(void) prototypes to fetch a character including the blank space, tab and 

the newline character. The get(char*) version assigns the input character to its argument and the 

get(void) version returns the input character. 

Since these functions are members of the input/output stream classes, we must invoke them 

using an appropriate object. For instance, look at the code snippet given below: 

char c; 

cin.get (c);  //get a character from keyboard and assign it to c 

while (c!= '\n') 

{ 

cout << C;       //display the character on screen cin.get (c);  

          //get another character 

} 

This code reads and displays a line of text (terminated by a newline character). 

Remember, the operator> >can also be used to read a character but it will skip the white spaces and 

newline character. The above while loop will not work properly if the statement 

cin >> c; 

is used in place of         

cin.get (c); 

Try using both of them and compare the results. The get(void) version is used as 

follows:  

char c; 

c - cin.getl); //cin.get (c) replaced 

The value returned by the function get() is assigned to the variable c. 

 

          The function put(), a member of ostream class, can be used to output a line of text, character 

by character. For example, 

cout   <<   put (‘x’); 

displays the character x and 

cout   <<   put (ch) ; 

displays the value of variable ch. 

The variable ch must contain a character value. We can also use a number as an argument to 

the function put (). For example, 

cout  <<  put (68) ; 

displays the character D. This statement will convert the int value 90 to a char value and display the 

character whose ASCII value is 68, 

The following segment of a program reads a line of text from the keyboard and displays it on 

the screen. 

char c; .                                                                                                               

cin.get (c)         //read a character 

while (c!=   ‘\n’) 

{ 

       cout<< put(c);  //display the character on screen cin.get (c ) ; 

} 

 

 

 

 



 

 

The getline () and write () Functions 
 

We can read and display a line of text more efficiently using the line-oriented input/output 

functions getline() and write(). The getline() function reads a whole line of text that ends with a 

newline character. This function can be invoked by using the object cin as follows: 

cin.getline(line,   size); 

This function call invokes the function which reads character input into the variable line. The 

reading is terminated as soon as either the newline character '\n' is encountered or size number of 

characters are read (whichever occurs first). The newline. character is read but not saved. Instead, it 

is replaced by the null character.  

For example; consider the following code: 

char name [20] ; 

cin.getline(name,   20);    

Assume that we have given the following input through the keyboard: 

Neeraj  good 

 

This input will be read correctly and assigned to the character array name. Let us suppose the 

input is as follows: 

Object Oriented Programming  

In this case, the input will be terminated after reading the following 19 characters: 

Object Oriented Pro 

 

After reading the string/ cin automatically adds the terminating null character to the character 

array. 

Remember, the two blank spaces contained in the string are also taken into account, i.e. 

between Objects and Oriented and Pro. 

We can also read strings using the operator >> as follows:  

cin >> name; 

But remember cin can read strings that do not contain white space. This means that cin can 

read just one word and not a series of words such as “Neeraj good”. 

 

Formatted Console I/O Operations 
 

C++ supports a number of features that could be used for formatting the output.  These 

features include: 

 ios class functions and flags. 

 Manipulators. 

 User-defined output functions. 

The ios class contains a large number of member functions that could be used to format the 

output in a number of ways. The most important ones among them are listed below. 

 

Table 10.1 

                                                           

     

  

 

 

 

 

 

 

 

 

 Function Task 

  width()                        To specify the required field size for displaying an output value 

Precision() To specify the number of digits to be displayed after the decimal point 

of a float value 

 

    fill() To specify a character that is used to fill the unused portion of  a field. 

    self() To specify format flags that can control the form of output display 

(such as Left-justification and right-justification). 

  Unself() To clear the flags specified. 



 

 

 

Manipulators are special functions that can be included in these statements to alter the format 

parameters of a stream. The table given below shows some important! manipulator functions that are 

frequently used. To access these manipulators, the file iomanip.h should be included in the program. 

 

Table 10.2 

        Manipulator 

 
         Equivalent Ios function 

 setw()        

 

width() 

 Setprecision() 

 

Precision() 

 Setfill() 

 

fill() 

 setiosflags() 

 

self() 

 Resetiosflags() 

 

Unself() 

  

In addition to these functions supported by the C++ library, we can create our own 

manipulator functions to provide any special output formats. 

 

 

 

    Student Activity 

1. What is a stream?                              

2. Define put ( ) and get ( ) functions 

3. What is the difference between getline ( ) and get ( ) functions? 

4. Define write ( ) functions. 

5. What are manipulators? 

  

Streams 
 

C++ is designed to work with a wide variety of devices including terminals, disks, and tape 

drives. Although each device is very different, the system supplies an interface to the programmer 

that is independent of the actual device being accessed, This interface is known as stream. 

A stream is a sequence of bytes. It acts either as a source from which the input data can be 

obtained or as a destination to which the output data can be sent. The source stream that provides 

data to the program is called the output stream. In other words, a program extracts the bytes from an 

input stream and inserts bytes into an output stream. 

The data in the input stream can come from the keyboard or any other storage device. 

Similarly, the data in the output stream can go to the screen or any other storage device. As 

mentioned earlier, a stream acts as an interface between the program and the input/output device. 

Therefore, a C++ program handles data (input or output) independent of the devices used. 

C++ contains several pre-defined streams that are automatically opened when a 

program begins its execution. They include cin and cout which have been used very often in our 

earlier programs. We know that cin represents the input stream connected to the standard input 

device (usually the keyboard) and cout represents the output stream connected to the standard output 

device (usually the screen). Note that the keyboard and the screen are default options. We can 

redirect streams to other devices or files, if necessary. 

 

I/O Operations 
 

Input and Output statements of computer languages are used to provide commu-nications 

between the user and the program. In most of the computer languages, input and output are done 



 

 

through statements. But in C++, these operations are carried out through its built-in functions. The 

I/O functions are designed in header files like fstream.h, iostream.h etc. 

Through these functions, data can be read from or written to files or standard input/output 

devices like keyboard and VDU. This execution of a program can be interrupted by input/output 

calls. Hence the data can be entered or output can be retrieved during execution. 

The file, stream classes support a number of member functions for performing the input and 

output operations on files. One pair of functions, pot( ) and get( ), are designed for handling a single 

character at a time. Another pair of functions, 

 

write() and readQ, are designed to write and read blocks of binary data. 

 

put( ) and get( )Functions 
The function put( ) writes a single character to the associated stream. Similarly, the function 

get ( ) reads a single character from the, associated stream. The program, requests for a string. On 

receiving the string, the program writes it, character, by character, to the file using the pot() function 

in a for loop. Note that the length of the string is used to terminate the for loop. 

 

C++ provides a number of useful predefined stream classes for console input/output 

operations. Some of the C++ the predefined stream objects are listed below. 

cin       This  is  the  name  of standard   input  stream,   usually  keyboard.   The 

corresponding name in C is stdin. 

cout     This is the name of standard output stream, usually screen of the monitor. The 

corresponding name in C is stdout. 

cerr    This is the name of standard error output stream, usually screen of the monitor. The 

corresponding name in C is stderr. 

clog     This is another version of cerr. It provides buffer to collect errors. C does not have a 

stream equivalent to this. 

In their default roles, these streams are tied up with the keyboard and screen of the monitor as 

describe above. However, you can redirect them from and to other devices and files. 

  

 

Keywords 
put (): A member of ostream class, could be used to output a line of text, character by 

character. 

Get (): A member of istream class, used to input a single character at a line. 

Getline (): The get line ( ) function reads a whole line of -text that ends with a new line 

character. This function could be invoked by using the object cin. 

Manipulators: Special functions that can be included in console I/O statements to alter the 

format-parameters of a stream 

 

Streams:  C++ is designed to work with a wide variety of devices including, disks and take drives. 

Although each device is very different the system suppliers an interface to the 

programmer that is independent of the actual device accessed. This interface is known as 

stream. 

 

Output stream: The source stream that provides data to the program is called the.output stream.                                         

 
 

 

 



 

                                                                                                                                                     P.T.O 138 

 

LECTURE-41 

 

Namespaces : 

Scopes 

Named entities, such as variables, functions, and compound types need to be declared before being 

used in C++. The point in the program where this declaration happens influences its visibility: 

 

An entity declared outside any block has global scope, meaning that its name is valid anywhere in 

the code. While an entity declared within a block, such as a function or a selective statement, has 

block scope, and is only visible within the specific block in which it is declared, but not outside it. 

 

Variables with block scope are known as local variables. 

 

For example, a variable declared in the body of a function is a local variable that extends until the 

end of the the function (i.e., until the brace } that closes the function definition), but not outside it: 

int foo;        // global variable 

 

int some_function () 

{ 

  int bar;      // local variable 

  bar = 0; 

} 

 

int other_function () 

{ 

  foo = 1;  // ok: foo is a global variable 

  bar = 2;  // wrong: bar is not visible from this function 

} 

 

 

In each scope, a name can only represent one entity. For example, there cannot be two variables with 

the same name in the same scope: 

int some_function () 

{ 

  int x; 

  x = 0; 

  double x;   // wrong: name already used in this scope 

  x = 0.0; 

} 

 

 

The visibility of an entity with block scope extends until the end of the block, including inner blocks. 

Nevertheless, an inner block, because it is a different block, can re-utilize a name existing in an outer 

scope to refer to a different entity; in this case, the name will refer to a different entity only within 

the inner block, hiding the entity it names outside. While outside it, it will still refer to the original 

entity. For example: 

// inner block scopes 

#include <iostream> 



 

                                                                                                                                                     P.T.O 139 

using namespace std; 

 

int main () { 

  int x = 10; 

  int y = 20; 

  { 

    int x;   // ok, inner scope. 

    x = 50;  // sets value to inner x 

    y = 50;  // sets value to (outer) y 

    cout << "inner block:\n"; 

    cout << "x: " << x << '\n'; 

    cout << "y: " << y << '\n'; 

  } 

  cout << "outer block:\n"; 

  cout << "x: " << x << '\n'; 

  cout << "y: " << y << '\n'; 

  return 0; 

} 

 

output: 
inner block: 

x: 50 

y: 50 

outer block: 

x: 10 

y: 50 

Note that y is not hidden in the inner block, and thus accessing y still accesses the outer variable. 

 

Variables declared in declarations that introduce a block, such as function parameters and variables 

declared in loops and conditions (such as those declared on a for or an if) are local to the block they 

introduce. 

 

 

Namespaces 

Only one entity can exist with a particular name in a particular scope. This is seldom a problem for 

local names, since blocks tend to be relatively short, and names have particular purposes within 

them, such as naming a counter variable, an argument, etc... 

 

But non-local names bring more possibilities for name collision, especially considering that libraries 

may declare many functions, types, and variables, neither of them local in nature, and some of them 

very generic. 

 

Namespaces allow us to group named entities that otherwise would have global scope into narrower 

scopes, giving them namespace scope. This allows organizing the elements of programs into 

different logical scopes referred to by names. 

 

The syntax to declare a namespaces is: 

 

namespace identifier 

{ 

  named_entities 

} 

 

Where identifier is any valid identifier and named_entities is the set of variables, types and 

functions that are included within the namespace. For example: 



 

                                                                                                                                                     P.T.O 140 

 

namespace myNamespace 

{ 

  int a, b; 

} 

 

 

In this case, the variables a and b are normal variables declared within a namespace called 

myNamespace. 

 

These variables can be accessed from within their namespace normally, with their identifier (either a 

or b), but if accessed from outside the myNamespace namespace they have to be properly qualified 

with the scope operator ::. For example, to access the previous variables from outside myNamespace 

they should be qualified like: 

1 

2 

myNamespace::a 

myNamespace::b   

 

 

Namespaces are particularly useful to avoid name collisions. For example: 

// namespaces 

#include <iostream> 

using namespace std; 

 

namespace foo 

{ 

  int value() { return 5; } 

} 

 

namespace bar 

{ 

  const double pi = 3.1416; 

  double value() { return 2*pi; } 

} 

 

int main () { 

  cout << foo::value() << '\n'; 

  cout << bar::value() << '\n'; 

  cout << bar::pi << '\n'; 

  return 0; 

} 

 

output: 

5 

6.2832 

3.1416  

 

In this case, there are two functions with the same name: value. One is defined within the 

namespace foo, and the other one in bar. No redefinition errors happen thanks to namespaces. 

Notice also how pi is accessed in an unqualified manner from within namespace bar (just as pi), 

while it is again accessed in main, but here it needs to be qualified as bar::pi. 

 

Namespaces can be split: Two segments of a code can be declared in the same namespace: 

1 namespace foo { int a; } 
 



 

                                                                                                                                                     P.T.O 141 

2 

3 

namespace bar { int b; } 

namespace foo { int c; } 

 

 

This declares three variables: a and c are in namespace foo, while b is in namespace bar. 

Namespaces can even extend across different translation units (i.e., across different files of source 

code). 

 

 

using 

The keyword using introduces a name into the current declarative region (such as a block), thus 

avoiding the need to qualify the name. For example: 

// using 

#include <iostream> 

using namespace std; 

 

namespace first 

{ 

  int x = 5; 

  int y = 10; 

} 

 

namespace second 

{ 

  double x = 3.1416; 

  double y = 2.7183; 

} 

 

int main () { 

  using first::x; 

  using second::y; 

  cout << x << '\n'; 

  cout << y << '\n'; 

  cout << first::y << '\n'; 

  cout << second::x << '\n'; 

  return 0; 

} 

Output: 
5 

2.7183 

10 

3.1416 

 

Notice how in main, the variable x (without any name qualifier) refers to first::x, whereas y refers 

to second::y, just as specified by the using declarations. The variables first::y and second::x 

can still be accessed, but require fully qualified names. 

 

The keyword using can also be used as a directive to introduce an entire namespace: 
// using 

#include <iostream> 

using namespace std; 

 

namespace first 

{ 

  int x = 5; 

  int y = 10; 



 

                                                                                                                                                     P.T.O 142 

} 

 

namespace second 

{ 

  double x = 3.1416; 

  double y = 2.7183; 

} 

 

int main () { 

  using namespace first; 

  cout << x << '\n'; 

  cout << y << '\n'; 

  cout << second::x << '\n'; 

  cout << second::y << '\n'; 

  return 0; 

} 

 

output:  

5 

10 

3.1416 

2.7183 

In this case, by declaring that we were using namespace first, all direct uses of x and y without 

name qualifiers were also looked up in namespace first. 

 

using and using namespace have validity only in the same block in which they are stated or in the 

entire source code file if they are used directly in the global scope. For example, it would be possible 

to first use the objects of one namespace and then those of another one by splitting the code in 

different blocks: 

// using namespace example 

#include <iostream> 

using namespace std; 

 

namespace first 

{ 

  int x = 5; 

} 

 

namespace second 

{ 

  double x = 3.1416; 

} 

 

int main () { 

  { 

    using namespace first; 

    cout << x << '\n'; 

  } 

  { 

    using namespace second; 

    cout << x << '\n'; 

  } 

  return 0; 

} 

 

output: 
5 

3.1416 

 



 

                                                                                                                                                     P.T.O 143 

Namespace aliasing 

Existing namespaces can be aliased with new names, with the following syntax: 

 
namespace new_name = current_name;  

 

The std namespace 

All the entities (variables, types, constants, and functions) of the standard C++ library are declared 

within the std namespace. Most examples in these tutorials, in fact, include the following line: 

  using namespace std; 
 

 

 

This introduces direct visibility of all the names of the std namespace into the code. This is done in 

these tutorials to facilitate comprehension and shorten the length of the examples, but many 

programmers prefer to qualify each of the elements of the standard library used in their programs. 

For example, instead of: 

  cout << "Hello world!"; 
 

 

 

It is common to instead see: 

  std::cout << "Hello world!"; 
 

 

 

Whether the elements in the std namespace are introduced with using declarations or are fully 

qualified on every use does not change the behavior or efficiency of the resulting program in any 

way. It is mostly a matter of style preference, although for projects mixing libraries, explicit 

qualification tends to be preferred. 

 

 

Storage classes 

The storage for variables with global or namespace scope is allocated for the entire duration of the 

program. This is known as static storage, and it contrasts with the storage for local variables (those 

declared within a block). These use what is known as automatic storage. The storage for local 

variables is only available during the block in which they are declared; after that, that same storage 

may be used for a local variable of some other function, or used otherwise. 

 

But there is another substantial difference between variables with static storage and variables with 

automatic storage: 

- Variables with static storage (such as global variables) that are not explicitly initialized are 

automatically initialized to zeroes. 

- Variables with automatic storage (such as local variables) that are not explicitly initialized are left 

uninitialized, and thus have an undetermined value. 

 

For example: 

// static vs automatic storage 

#include <iostream> 



 

                                                                                                                                                     P.T.O 144 

using namespace std; 

 

int x; 

 

int main () 

{ 

  int y; 

  cout << x << '\n'; 

  cout << y << '\n'; 

  return 0; 

} 

Output: 
0 

4285838 

 

The actual output may vary, but only the value of x is guaranteed to be zero. y can actually contain 

just about any value (including zero). 

 

 

 

 

 



 

                                                                                                                                                     P.T.O 145 

Lecture-42: 

New & Delete Operators+ new operator 

Dynamic memory allocation means creating memory at runtime. For example, when we declare an 

array, we must provide size of array in our source code to allocate memory at compile time. 

But if we need to allocate memory at runtime me must use new operator followed by data type. If 

we need to allocate memory for more than one element, we must provide total number of elements 

required in square bracket[ ]. It will return the address of first byte of memory. 

Syntax of new operator 

 

            ptr = new data-type; 

            //allocte memory for one element 

 

            ptr = new data-type [ size ]; 

            //allocte memory for fixed number of element 

 

C++ delete operator 

Delete operator is used to deallocate the memory created by new operator at run-time. Once the 

memory is no longer needed it should by freed so that the memory becomes available again for 

other request of dynamic memory. 

Syntax of delete operator 

 

            delete ptr; 

            //deallocte memory for one element 

 

            delete[] ptr; 

            //deallocte memory for array 

 

 

           

Example of c++ new and delete operator 

 

 #include<iostream.h> 

 #include<conio.h> 



 

                                                                                                                                                     P.T.O 146 

 

 void main() 

 { 

 

  int size,i; 

  int *ptr; 

 

  cout<<"\n\tEnter size of Array : "; 

  cin>>size; 

 

  ptr = new int[size]; 

  //Creating memory at run-time and return first byte of address to ptr. 

   for(i=0;i<5;i++)        //Input arrray from user. 

   { 

   cout<<"\nEnter any number : "; 

   cin>>ptr[i]; 

   } 

   for(i=0;i<5;i++)         //Output arrray to console. 

   cout<<ptr[i]<<", "; 

   delete[] ptr; 

   //deallocating all the memory created by new operator 

 

 } 

 Output : 

   Enter size of Array : 5 

   Enter any number : 78 

   Enter any number : 45 

   Enter any number : 12 

   Enter any number : 89 

   Enter any number : 56 

 

   78, 45, 12, 89, 56, 


	Object Oriented Programming Using C++
	Object Oriented Programming Using C++ (1)
	C++ Function Overriding
	Accessing the Overridden Function in Base Class From Derived Class
	Abstract Class
	Characteristics of Abstract Class
	Pure Virtual Functions
	Example of Abstract Class
	Why can't we create Object of Abstract Class ?

	Scopes
	Namespaces
	using
	Namespace aliasing
	The std namespace
	Storage classes
	Syntax of new operator
	C++ delete operator
	Syntax of delete operator
	Example of c++ new and delete operator



